

Elm Grove – Ground Investigation

Client:

Cavan County Council

Client's Representative: Alan Traynor Consulting Engineers Ltd

Report No.:

20-0749A

Date:

Status:

October 2020

Final for Issue

Causeway Geotech Ltd 8 Drumahiskey Road, Ballymoney

Co. Antrim, N. Ireland, BT53 7QL

+44 (0)28 2766 6640 info@causewaygeotech.com www.causewaygeotech.com

istered in Northern Ireland. Company Number: NI610766 Approved: ISO 9001 • ISO 14001 • OHSAS 18001

CONTENTS

Document Control Sheet

Note on: Methods of describing soils and rocks & abbreviations used on exploratory hole logs

1	AUT	HORITY	5
2	SCO	PE	5
3	DES	CRIPTION OF SITE	5
4	SITE 4.1 4.2 4.3 4.4	OPERATIONS Summary of site works Boreholes Dynamic probes Indirect CBR tests	6 6 7
5	LAB 5.1 5.2	ORATORY WORK Geotechnical laboratory testing of soils Environmental laboratory testing of soils	7
6	GRO 6.1 6.2 6.3	UND CONDITIONS General geology of the area Ground types encountered during investigation of the site Groundwater	8 8
7	DISC 7.1 7.2 7.3	CUSSION. Proposed construction Recommendations for construction 7.2.1 Summary	9 9 10 10 12 12 12 13 13
8	REF	ERENCES	15

APPENDICES

Appendix A	Site and exploratory hole location plans
Appendix B	Borehole logs
Appendix C	Indirect CBR test results
Appendix D	Geotechnical laboratory test results
Appendix E	SPT hammer energy measurement report

Document Control Sheet

Report No.:		20-0749A								
Project Title:		Elm Grove – C	Elm Grove – Ground Investigation							
Client:		Cavan County	Cavan County Council							
Client's Repre	sentative:	Alan Traynor	Alan Traynor Consulting Engineers Ltd							
Revision:	A01	Status:	Final for issue	Issue Date:	2 nd October 2020					
Prepared by:		Reviewed by	7:	Approved by	7:					
Jun	ll	Stept	Francy	Jam Or Delan.						
Carin Cornwall BSc MSc PhD		Stephen Fran BSc MSc MIEr	-	Darren O'Mah BSc MSc MIEI	iony EurGeol PGeo					

The works were conducted in accordance with:

UK Specification for Ground Investigation 2nd Edition, published by ICE Publishing (2012)

British Standards Institute (2015) BS 5930:2015, Code of practice for site investigations.

BS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing.

Geotechnical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in Ireland

Laboratory testing was conducted in accordance with:

British Standards Institute BS 1377:1990 parts 2, 4, 5, 7 and 9

METHODS OF DESCRIBING SOILS AND ROCKS

Soil and rock descriptions are based on the guidance in BS5930:2015, The Code of Practice for Site Investigation.

II.	d on exploratory hole logs
U	Nominal 100mm diameter undisturbed open tube sample (thick walled sampler).
UT	Nominal 100mm diameter undisturbed open tube sample (thin walled sampler).
Р	Nominal 100mm diameter undisturbed piston sample.
В	Bulk disturbed sample.
LB	Large bulk disturbed sample.
D	Small disturbed sample.
С	Core sub-sample (displayed in the Field Records column on the logs).
L	Liner sample from dynamic sampled borehole.
W	Water sample.
ES / EW	Soil sample for environmental testing / Water sample for environmental testing.
SPT (s)	Standard penetration test using a split spoon sampler (small disturbed sample obtained).
SPT (c)	Standard penetration test using 60 degree solid cone.
(x,x/x,x,x,x)	Blows per increment during the standard penetration test. The initial two values relate to the seating drive (150mm) and the remaining four to the 75mm increments of the test length.
(Y for Z/Y for Z)	Incomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given seating or test length 'Z' (mm).
N=X	SPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm).
HVP / HVR	In situ hand vane test result (HVP) and vane test residual result (HVR). Results presented in kPa.
V VR	Shear vane test (borehole). Shear strength stated in kPa.V: undisturbed vane shear strengthVR: remoulded vane shear strength
Soil consistency description	In cohesive soils, where samples are disturbed and there are no suitable laboratory tests, N values may be used to indicate consistency on borehole logs – a median relationship of Nx5=Cu is used (as set out in Stroud & Butler 1975).
dd-mm-yyyy	Date at the end and start of shifts, shown at the relevant borehole depth. Corresponding casing and water depths shown in the adjacent columns.
\bigtriangledown	Water strike: initial depth of strike.
▼	Water strike: depth water rose to.
Abbreviations relating	g to rock core – reference Clause 36.4.4 of BS 5930: 2015
TCR (%)	Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run.
SCR (%)	Solid Core Recovery: Ratio of solid core to the total length of core run. Solid core has a full diameter, uninterrupted by natural discontinuities, but not necessarily a full circumference and is measured along the core axis between natura fractures.
RQD (%)	Rock Quality Designation: Ratio of total length of solid core pieces greater than 100mm to the total length of core run
FI	Fracture Index: Number of natural discontinuities per metre over an indicated length of core of similar intensity of fracturing.
NI	Non Intact: Used where the rock material was recovered fragmented, for example as fine to coarse gravel size particles
AZCL	Assessed zone of core loss: The estimated depth range where core was not recovered.
DIF	Drilling induced fracture: A fracture of non-geological origin brought about by the rock coring.
(xxx/xxx/xxx)	Spacing between discontinuities (minimum/average/maximum) measured in millimetres.

Elm Grove

1 AUTHORITY

On the instructions of Alan Traynor Consulting Engineers Ltd, ("the Client's Representative"), acting on the behalf of Cavan County Council ("the Client"), a ground investigation was undertaken at the above location to provide geotechnical information for input to the design and construction of a proposed residential development.

This report details the work carried out both on site and in the geotechnical and chemical testing laboratories; it contains a description of the site and the works undertaken, the exploratory hole logs and the laboratory test results. A discussion on the recommendations for construction is also provided.

All information given in this report is based upon the ground conditions encountered during the site investigation works, and on the results of the laboratory and field tests performed. However, there may be conditions at the site that have not been taken into account, such as unpredictable soil strata, contaminant concentrations, and water conditions between or below exploratory holes. It should be noted that groundwater levels usually vary due to seasonal and/or other effects and may at times differ to those recorded during the investigation. No responsibility can be taken for conditions not encountered through the scope of work commissioned, for example between exploratory hole points, or beneath the termination depths achieved.

This report was prepared by Causeway Geotech Ltd for the use of the Client and the Client's Representative in response to a particular set of instructions. Any other parties using the information contained in this report do so at their own risk and any duty of care to those parties is excluded.

2 SCOPE

The extent of the investigation, as instructed by the Client's Representative, included boreholes, soil sampling, in-situ and laboratory testing, and the preparation of a report on the findings including recommendations for construction.

3 DESCRIPTION OF SITE

As shown on the site location plan in Appendix A, the works were conducted on a previously developed site with a large shed near Elm Grove and Church Street, Cavan. The site is bordered by residential buildings to the east, west, and south and a car park to the north.

4 SITE OPERATIONS

4.1 Summary of site works

Site operations, which were conducted between 24th and 26th August 2020, comprised:

- seven boreholes by dynamic (windowless) sampling methods
- three dynamic probes from ground level
- four indirect CBR tests.

The exploratory holes and in-situ tests were located as instructed by the Client's Representative, as shown on the exploratory hole location plan in Appendix A.

4.2 Boreholes

Seven boreholes (BH01-BH07) were put down to completion by light percussion boring techniques using a Dando Terrier dynamic sampling rig. The boreholes were put down initially in 150mm diameter, reducing in diameter with depth as required, down to 50mm by use of the smallest sampler.

Hand dug inspection pits were carried out between ground level and 1.20m depth to ensure boreholes were put down clear of services or subsurface obstructions. The boreholes were taken to depths ranging between 4.00m and 5.00m where they were terminated on encountering virtual refusal on obstructions.

Standard penetration tests were carried out in accordance with BS EN 22476-3:2005+A1:2011 at standard depth intervals using the split spoon sampler (SPT_(s)). The penetrations are stated for those tests for which the full 150mm seating drive or 300mm test drive was not possible. The *N*-values provided on the borehole logs are uncorrected and no allowance has been made for energy ratio corrections. The SPT hammer energy measurement report is provided in Appendix E.

Disturbed (bulk and small bag) samples were taken within the encountered strata. Undisturbed (U100) samples were taken as appropriate within fine grained strata. Environmental samples were taken as directed by the Client's Representative.

Any water strikes encountered during boring were recorded along with any changes in their levels as the borehole proceeded. Details of the water strikes are presented on the individual borehole logs.

Appendix B presents the borehole logs.

4.3 Dynamic probes

Dynamic probes (DP01-DP03) were conducted from ground level at three locations using the DPSHB method as described in BS EN ISO 22476-3:2005+A1:2011. The method entails a 63.5kg hammer falling 0.75m onto a 50.5mm diameter cone with an apex angle of 90°.

Appendix B provides the dynamic probe logs in the form of plots, against depth, of the number of blows per 100mm penetration.

4.4 Indirect CBR tests

Four indirect CBR tests (CBR01-CBR04) were conducted using a Dynamic Cone Penetrometer (DCP). The equipment was developed in conjunction with the UK Transport Research Laboratory, is used widely throughout the world, and is referred to in the UK Highway Agency Interim Advice Note 73/06.

The test results are presented in Appendix C in the form of plots of the variation with depth of the penetration per blow. Straight lines have been fitted to the plots and the CBR for each depth range estimated using the following relationship, which is derived from Kleyn & Van Heerden (1983):

Log CBR = 2.48-1.057 Log (mm/blow)

The frequently elevated CBR values are a consequence of the coarse-grained content of the penetrated soils and are often not representative of the soil matrix.

5 LABORATORY WORK

Upon their receipt in the laboratory, all disturbed samples were carefully examined and accurately described and their descriptions incorporated into the borehole logs.

5.1 Geotechnical laboratory testing of soils

Laboratory testing of soils comprised:

- **soil classification:** moisture content measurement, Atterberg Limit tests and particle size distribution analysis.
- **shear strength** (total stress): unconsolidated undrained triaxial tests
- soil chemistry: pH and water soluble sulphate content

Laboratory testing of soils samples was carried out in accordance with British Standards Institute: *BS 1377, Methods of test for soils for civil engineering purposes; Part 1 (2016), and Parts 2-9 (1990).*

The test results are presented in Appendix D.

5.2 Environmental laboratory testing of soils

Environmental testing, as specified by the Client's Representative was conducted on a selected environmental soil sample in borehole BH02 by Chemtest at its laboratory in Newmarket, Suffolk.

Testing was carried out for a range of determinants, including:

- Metals
- Speciated total petroleum hydrocarbons (TPH)
- Speciated polycyclic aromatic hydrocarbons (PAH)
- Cyanides
- Asbestos screen
- pH

Results of environmental laboratory testing are presented in Appendix D following geotechnical testing results.

6 GROUND CONDITIONS

6.1 General geology of the area

Published geological mapping indicate the superficial deposits underlying the site comprise Glacial Till shown in close proximity to the site. These deposits are underlain by greywacke of the Red Island Formation.

6.2 Ground types encountered during investigation of the site

A summary of the ground types encountered in the exploratory holes is listed below, in approximate stratigraphic order:

- **Paved surface:** boreholes BH04, BH05, and BH06 encountered 170-190mm of concrete surfacing.
- **Topsoil:** encountered typically in 100mm thickness.
- **Made Ground (sub-base):** aggregate fill beneath the paved surface in boreholes BH04, BH05, and BH06.
- Made Ground (fill): reworked sandy gravelly silty clay or sandy clayey gravel fill with occasional

fragments bitmac, brick and plastic.

• **Glacial Till:** sandy gravelly clay, frequently with low cobble content, locally very soft to soft but typically firm in upper horizons, becoming stiff with increasing depth.

6.3 Groundwater

Groundwater was encountered during percussion boring through soil as water strikes at 2.60-4.40m in boreholes BH01-BH04. Boreholes BH05-BH07 were dry.

Details of the individual groundwater strikes are presented on the exploratory hole logs for each location. Seasonal variation in groundwater levels should be factored into design considerations.

7 **DISCUSSION**

7.1 Proposed construction

It is proposed to construct new residential buildings on the site.

No further details were available to Causeway Geotech at the time of preparing this report and any designs based on the recommendations or conclusions within this report should be completed in accordance with the current design codes, taking into account the variation and the specific details contained within the exploratory holes. Causeway Geotech were commissioned to provide a geotechnical report, and it is outwith our remit to advise on structure design.

7.2 Recommendations for construction

7.2.1 Summary

Based on the presence of firm to stiff glacial till at relatively shallow depths across much of the site, the implementation of traditional shallow (spread) foundations (strip/pad and trench fill) are considered suitable in these areas, however the shallow water table at this site may complicate construction and will likely require groundwater control. Structures in the area of BH03 will also require deep foundation solutions such as ground improvement or piled foundations. If groundwater control is not possible, structures in other areas of the site, particularly around BH02 will also require piled foundations or ground improvement solutions.

Should piling be adopted as the preferred foundation type, it is highly recommended that further ground investigation works involving rotary drilling be carried out to prove the depth to bedrock across the site.

7.2.2 Soil strength parameters

When estimating the shear strength of fine soils (silt/clay), reference is made to the results of Standard Penetration Tests (SPT's) carried out within the boreholes. The undrained shear strength of fine soils can be estimated using the correlation developed by Stroud & Butler:

 $C_u = f_1 \times N$

where f_1 is typically in the range 4 to 6. A median f_1 value of 5 is adopted for this report.

For granular soils (sand/gravel), a graphical relationship between SPT "N" value and angle of shearing resistance, φ , has been developed by Peck, Hanson and Thorburn. This is published in *Foundation Design and Construction* (Tomlinson, 2001) and is referenced in this report when deriving angles of shearing resistance for the gravel soils.

7.2.3 Foundations and ground floor construction

Foundations should transfer loading to below any Made Ground or subsoil. The recommended foundation construction and allowable bearing pressure (ABP) at the borehole locations are presented in Table 1.

Borehole	oreholeSuitable bearing stratumABP (1)H012.00m210H023.80m100>5.0m-H03Base of soft soils notH042.00m140	Estimated ABP (kPa)	Strata description	Foundation type	Ground floor construction	Groundwater
BH01	3.80m 100		Stiff Glacial Till	Trench fill	Ground bearing	2.60 and 3.20mbgl
BH02	3.80m	100	Firm Glacial Till	Trench fill (with trench support and possible sump pumping)	Suspended	3.80mbgl
	>5.0m	-	Bedrock	Piling	Suspended	
BH03	Base of soft s	soils not identif	ied due to refusa]#		3.80 and 4.40mbgl
BH04	2.00m	140	Firm Glacial Till	Trench fill	Ground bearing	4.00mbgl
BH05	BH05 1.20m 150		Firm Glacial Till	Strip & pad	Ground bearing	Not encountered
BH06	2.00m	150	Firm Glacial Till	Trench fill	Ground bearing	Not encountered

Table 1: Construction recommendations

Borehole	Depth below EGL* to suitable bearing stratum	Estimated ABP (kPa)	Strata description	Foundation type	Ground floor construction	Groundwater
BH07	3.00m	270	Stiff Glacial Till	Trench fill	Suspended	Not encountered

*Existing Ground Level

#Further ground investigation works are required to provide a recommended foundation design

Based on the findings of the site investigation, spread foundations (trench fill) may be suitable over portions of the site with estimated allowable bearing pressures between 100kPa and 270kPa at depths between 1.20m and 3.80m on firm glacial till. However, borehole BH02 may require an alternative foundations solution due to the presence of soft soils. In addition, the base of soft soils was not identified in borehole BH03 and will require further ground investigation.

The base of foundation excavations should be thoroughly inspected in accordance with the Earthworks Specification; any soft soils should be removed with the resultant void backfilled with ST1 concrete. A consistent bearing stratum should be provided for any building unit to limit differential settlements.

Given the generally fine grained/cohesive nature of the soils throughout the proposed formation levels, excavations for foundations are likely to be relatively stable. However, any instability can be minimised by battering the side slopes at 2 vertical to 1 horizontal and by limiting the duration that the excavation is open. Groundwater control, where required, will be possible by pumping from sumps formed in the base of excavations.

If spread foundations are considered too problematic the practicable alternative foundation solutions are:

1. The adoption of ground improvement using 'vibro' techniques, providing a foundation construction method flexible to the variable ground conditions across the site. The most appropriate technique is likely to be vibro-stone columns installed using the bottom feed process: these would penetrate through the Made Ground and soft/loose soils to terminate in stiff / medium dense soils.

Ground improvement would allow the use of spread foundations at shallow depths.

Detailed design proposals should be obtained from specialist contractors: these should include the means to verify that the adopted treatment has achieved the specified ground bearing capacity.

The adoption of ground improvement below building footprints would allowing the application of ground bearing floor slabs

2. Piling to transfer loadings to depth:

Piling to transfer loadings to depth is suggested to be the most practicable and applicable option given the variation in depth to a consistent bearing stratum across the site, coupled with the relatively shallow water table which would be problematic for any open trench shallow foundation systems.

Driven piles are the preferred pile type – of precast concrete or steel/ductile iron. The piles should be driven to a predetermined set – each pile will, therefore, be effectively proof tested by the installation method.

If the surrounding land use precludes the use of hard drive piles, due to environmental restrictions with respect to noise and vibration, low vibration driven piles, continuous flight auger (CFA) or continuous helical displacement (CHD) piles will be required.

Piles will acquire capacity from shaft friction through the glacial deposits, and end bearing on the weathered bedrock.

Where site levels are to be raised, piles should be designed to resist additional loading that will arise due to negative skin friction along the pile length passing through Made Ground and soft soils.

The detailed design of piles should be undertaken in conjunction with specialist piling contractors. Their proposals should include the means to verify that the required load capacity has been achieved: for example, dynamic pile tests and/or static load tests.

Where pile foundation solution is adopted, floor slabs should be supported by ground beams spanning between piles caps supported by piles.

7.2.4 Floor slabs

Floor slabs should not bear directly onto Made Ground or soft soils. Consequently, the use of ground bearing floor slabs is considered appropriate following the removal of any surface Made Ground and soft clay layers and their replacement using well-graded well-compacted granular fill. However, a suspended floor slab should be adopted where the difference in levels of the proposed floor and the base of Made Ground/soft soils is greater than 600mm. Where a suspended floor slab is adopted the use of intermediate lines of support stub walls would reduce the spans required for flooring units.

7.2.5 Excavations for services

For the installation of services ducts/trenches, it is suggested that open trenching will be the most practicable construction method. Generally speaking, the ground conditions should render the use of open trenching by backhoe excavator possible, with some trench support required for the uppermost stratum.

Where working in open trenches, it is thought that trench support systems, by way of a trench box (or possibly sheet piles), will be required to maintain trench stability and safe working conditions. Groundwater control at these locations should be possible by means of sump pumping.

To preclude the eventuality of differential settlements in pipes, they should be laid on a consistent stratum of appropriate allowable bearing capacity and protected with appropriate fill cover.

Where ducts and chambers must be installed in areas where localised soft spots are encountered, the use of geogrid reinforcement along the base of the excavation on is recommended. This will stiffen the base of the trench and help control longitudinal differential settlement.

Backfilling of trenches may be completed by using compacted Cl 804 granular fill and reinstated as appropriate.

7.2.6 Soil aggressivity

An assessment of the Aggressive Chemical Environment for Concrete (ACEC) was undertaken through reference to the Building Research Establishment (BRE) Special Digest 1 (2017).

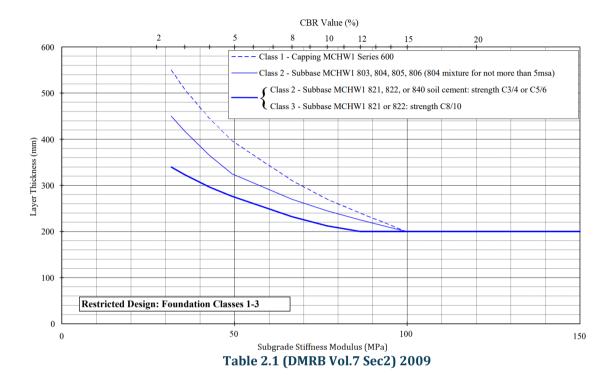
As noted by BRE Special Digest 1, sulphates in the soil and groundwater are the chemical agents most likely to attack concrete. The extent to which sulphates affect concrete is linked to their concentrations, the type of ground, the presence of groundwater, the type of concrete and the form of construction in which concrete is used.

BRE Special Digest 1 identifies four different categories of site which require specific procedures for investigation for aggressive ground conditions:

- Sites not subjected to previous industrial development and not perceived as containing pyrite;
- Sites not subjected to previous industrial development and perceived as containing pyrite;
- Brownfield sites not perceived as containing pyrite;
- Brownfield sites perceived as containing pyrite.

For the purposes of this report the site was classified as not having been subject to previous industrial development and not perceived as containing pyrite.

The results of chemical tests (pH and water soluble sulphate contents) on soil samples indicate Design Sulphate Class DS-1 and ACEC Class AC-1 – reference Table C1 of BRE Special Digest 1 (Building Research Establishment, 2005). The Special Digest does not require any measures to protect underground concrete elements greater that 140mm thick.


7.2.7 Access roads, car parks and hard standing

Based on a summary of the CBR test undertaken at the site, it is envisaged that the upper deposits at the site would be suitable for the placement of road make up layers. A CBR value in excess of 5% at a depth of 0.5mbgl was recorded across the site.

Table 2.1 of volume 7 section2 of the Design Manual for Roads and Bridges (below), gives guidance on the average thickness of the pavement layers in relation to the CBR results. As can be seen, a CBR in excess of 5% requires a 400mm thick capping layer.

It is recommended that further testing be undertaken during the course of construction works at intervals as set out in the Earthworks Specification, and should any areas indicate lower than expected value, the above plot should be used to determine the thicknesses of any capping or sub-base layers that may need to be placed in these areas.

The use of geosynthetics in the construction of paved areas, will be beneficial, particularly in areas of Made Ground. These could include a geosynthetic (e.g., a geogrid) at subgrade level with further benefit gained by incorporating further layer(s) within the capping/sub-base layer. Road design should be undertaken by a specialist earthworks contractor/designer.

7.3 Site contamination

Selected soil samples were analysed for a range of potential contaminants including:

- Metals;
- Speciated total petroleum hydrocarbons (TPH);
- Speciated polycyclic aromatic hydrocarbons (PAH);
- Cyanides;

- Sulphates and sulphide;
- Phenols; and
- Asbestos screening

In the initial examination of the potential risk of site contamination, the laboratory results have been compared to the LQM/CIEH S4UL's assessment criteria relevant to the proposed land use.

The results from the tested samples do not identify significantly elevated concentrations above the available S4UL's.

It should be noted that the above assessment is based on the results of the soil samples against available S4UL's and this assessment has not been undertaken following the CLR11 guidelines. Any potential contamination identified during site development by visual or olfactory means should be investigated, including further laboratory testing and assessment and appropriate health & safety waste disposal and remediation measures adopted.

8 **REFERENCES**

Geotechnical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in Ireland

IS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing. National Standards Authority of Ireland.

BS 5930: 2015: Code of practice for ground investigations. British Standards Institution.

BS EN ISO 14688-1:2018: Geotechnical investigation and testing. Identification and classification of soil. Part 1 Identification and description.

BS EN ISO 14688-2:2018: Geotechnical investigation and testing. Identification and classification of soil. Part 2 Principles for a classification.

BS 1377: 1990: Methods of test for soils for civil engineering purposes. British Standards Institution.

BS EN ISO 22476-3:2005+A1:2011: Geotechnical investigation and testing. Field testing. Standard penetration test.

Building Research Establishment (2005) BRE Special Digest 1, Concrete in aggressive ground.

APPENDIX A SITE AND EXPLORATORY HOLE LOCATION PLANS

CALISEMAY	Project No.:	20-0749a	Client:	Cavan County Council
GEOTECH	Project Name:	Elm Grove	Client's Representative:	Alan Traynor Consulting Engineers Ltd.
Legend Key Image: Title: Site Location Plan			Site Location	
Last Revised: Scale: 01/10/2020 1:20000	bing Microsoft product screen	shot(s) reprinted with permission from Microsoft Corporation	a de la constante de	1 Kilometres 3000 Feet

APPENDIX B BOREHOLE & DYNAMIC PROBE LOGS

		GEOT	AY ECH			roject No. 0-0749A	Client:		ve ounty Council ynor Consulting Engine	ers Ltd.	В	orehole ID BH01
Metho	od	Plant Used	Top (m)	Base (I	n) Co	oordinates		-			S	heet 1 of 1
Light Perc	ussion	Dando Terrier	0.00	4.00	24	12139.17 E 05235.66 N	Final D		Start Date: 25/08/2020 End Date: 25/08/2020		9	Scale: 1:40 FINAL
Depth (m)	Sample / Tests	Field Records	5	Casing Wa Depth De (m) (r	pth LC		Legend		Description		Water	Backfill
0.10 - 0.50	B2			(m) (r	n)	- 0.10			oft brownish grey slightly sar	dy slightly gravelly	_	
0.50 0.50 - 1.20	ES1 B3					- - 0.50 -		silty CLAY. Sand is fi Soft to firm orangis	h brown sandy gravelly CLAN bangular fine to coarse.	ngular fine to coarse.		0.5
1.20 1.20 - 2.00	U10 B4	Ublow=38 75%		1.20 D	ry	- - 1.20 - -			n sandy slightly gravelly CLA bangular fine to medium.	Y. Sand is fine to		1.0
2.00 2.00 - 3.00 2.00 - 2.45	D7 B5 SPT (S)	N=21 (3,4/4,5,6,6) Hai 0267 Water strike at 2.60m				- 2.00			sandy slightly gravelly CLAY e to coarse. Gravel is angula			2.0
3.00 3.00 - 4.00 3.00 - 3.45		N=25 (3,4/4,5,7,9) Hai 0267 Water strike at 3.20m	mmer SN =			- - - 3.00 - - -		Stiff brown slightly Gravel is angular fir	sandy very gravelly CLAY. Sa ne to medium.	nd is fine to coarse.	¥	3.0
4.00 4.00 - 4.16	D9 SPT (S)	N=50 (25 for 115mm/ 50mm) Hammer SN =				- - - - - - -			End of Borehole at 4.00n	ı		4.0
						-						5.0
						- - - - - -						5.5
						- - - - -						6.0
						- - -						7.0
					_		_				_	
	Wate	r Strikes		Chisel	ling De	tails	Remarks					
5truck at (m) Ca 2.60 3.20) Time (min) Rose to (m) From (Γο (m)		Hand pit e	xcavated to 1.20m. Iter at 2.90m on comp	letion.			
Casing D To (m)	Details Diameter	Water Added From (m) To (m)										
								ion Reason d on possible boulder,	/bedrock	Last Updated 01/10/2020	V	AGS

		AUSEW	/AY		Projec 20-07		Project Name: Elm Grove Client: Cavan Cou	inty Council		Bo	orehole BH02	
		GEOT	ECH				Client's Rep: Alan Trayno	or Consulting Enginee	rs Ltd.			
Meth Light Perc		Plant Used Dando Terrier	Top (m) 0.00	Base (m) 5.00	Coordi	nates	Final Depth: 5.00 m St	tart Date: 25/08/2020	Driller: PL		heet 1 of Scale: 1:4	
					242129 305269		Elevation: mOD Er	nd Date: 25/08/2020	Logger: SF		FINAL	
Depth (m)	Sample / Tests	Field Records	5	Casing Water Depth Depth (m) (m)	Level mOD	Depth (m)	Legend	Description		Water	Backfill	
0.00 - 0.50	B3							vnish grey slightly sandy slig arse GRAVEL. Sand is fine to		-		
0.50 0.50 - 1.20	ES1 B4				-	0.50		greyish brown slightly sand oarse. Gravel is angular fine				0.5
1.00	ES2				-	-						1.0
1.20 1.20 - 2.00 1.20 - 1.65	D9 B5 SPT (S)	N=5 (1,1/1,1,1,2) Ham 0267	imer SN =	Dry	- - - - - -	1.20		ND: Soft brownish grey sligh fine to coarse. Gravel is sub:				1.5
2.00 2.00 - 3.00	U13 B6	Ublow=36 0%		Dry		- 2.00	Firm brownish grey sat is angular fine to medi	indy gravelly CLAY. Sand is fi ium.	ne to coarse. Gravel			2.0
3.00	D10					- 3.00						2.5
3.00 - 3.80 3.00 - 3.45	В7	N=8 (1,1/1,2,3,2) Ham 0267	imer SN =	Dry		- 3.00		tly sandy slightly gravelly CL ngular fine to medium.	AY. Sand is fine to			3.5
3.80 - 5.00 1.00 1.00 - 4.45	B8 D11 SPT (S)	Water strike at 3.80m N=11 (1,2/1,2,3,5) Har 0267		Dry	- - - - - - - -	3.80	Firm orangish brown s Gravel is subrounded f	sandy gravelly CLAY. Sand is fine to medium.	fine to coarse.			4.0
5.00 5.00 - 5.42	D12 SPT (S)	N=50 (10,12/50 for 27	'5mm)	3.60	- - - - - -	- 5.00		End of Borehole at 5.00m				4.5 5.0
		Hammer SN = 0267			-							5.5
					-	-						6.0
					-							6.5
						-						7.0
	Wate	r Strikes		Chisellin	g Details		Remarks					_
truck at (m) C 3.80)) Time (min) Rose to (m) From ((hh:mm)	land pit excavated to 1.20m. Groundwater at 3.0m on completic	on.				
Casing D To (m)	Details Diameter	Water Added From (m) To (m)										
							ermination Reason	edrock	Last Updated		AG	`

		GEOT	VAY ECH			oject No.)-0749A	Client:		ve punty Council vnor Consulting Engir	neers Ltd.	Во	orehole II BH03	D
Meth Light Perc		Plant Used Dando Terrier	Top (m)	Base (n 5.00	1) Co	ordinates	Final De	epth: 5.00 m	Start Date: 25/08/20	20 Driller: PL		heet 1 of 1	
Light Fere	20331011		0.00	5.00		2122.15 E 5289.74 N	Elevatio	on: mOD	End Date: 25/08/20	20 Logger: SF		FINAL	
Depth (m)	Sample / Tests	Field Record	s	Casing Wat Depth Dept (m) (m)	h Lev		Legend		Description	Ч ,	Water	Backfill	
0.10 - 1.30 0.30	B3 ES1					0.10			eyish brown slightly sandy ith bitmac. Sand is fine to			0.5	
1.00 1.20 1.20 - 1.65 1.30 - 2.00		N=10 (6,4/3,2,2,3) Ha 0267	ımmer SN =	Dr	y	- 1.30		Firm brown slightly is subangular fine to	sandy gravelly CLAY. Sand o medium.	is fine to coarse. Gravel		1.0	-
2.00 2.00 - 3.00 2.00 - 2.45	D9 B5 SPT (S)	N=8 (1,1/2,2,2,2) Han 0267	nmer SN =	Dr	y	- 2.00			n brown slightly sandy slig avel is subangular fine to r			2.0	-
3.00 3.00 - 4.00 3.00 - 3.45	D10 B6 SPT (S)	N=6 (1,2/1,2,1,2) Han 0267	nmer SN =	Dr	y	- 3.00			slightly sandy slightly grav gular fine to medium.	elly CLAY. Sand is fine to		3.0	-
4.00 4.00 - 5.00 4.00 - 4.45	D11 B7 SPT (S)	Water strike at 3.80m N=6 (1,1/1,1,2,2) Han 0267 Water strike at 4.40m	nmer SN =	3.8	0	- - 4.00 -		Soft to firm brown s Gravel is angular fin	lightly sandy gravelly CLA e to medium.	Y. Sand is fine to coarse.	Y	4.0	- - - - - .5 -
5.00 5.00 - 5.42	D12 SPT (S)	N=50 (9,11/50 for 27! Hammer SN = 0267	5mm)	4.4	0	- 5.00			End of Borehole at 5.00	Dm		5.0	-
						- - - - - -						6.0	- - - - -
						-						6.5	-
						-	_						
	Wate	r Strikes		Chiselli	ng Det	ails	Remarks						
Struck at (m) C 3.80 4.40 Casing E	3.80 4.40)) Time (min) Rose to	(m) From (o (m)	Time (hh:mm)	nana pre es	xcavated to 1.20m. ter at 4.00m on comp	letion.				
-	Diameter)					ion Reason	bedrock	Last Updated		AGS	5

•		GEOT			20-	ject No. 0749A	Client:		ve ounty Council ynor Consulting Er	ngineers l	_td.		orehole ID BH04
Methe Light Perc		Plant Used Dando Terrier	Top (m) 0.00	Base (m 4.00	2423	rdinates 154.06 E 301.62 N	Final De		Start Date: 24/08/		oriller: PL		heet 1 of 1 Scale: 1:40
Depth	Sample /	Field Record	de la constante de	Casing Wate Depth Depti	r Level	Depth	Legend	n: mod	Description	/2020	ogger: SF	Water	Backfill
(m) 0.19 - 0.35 0.30 - 1.00 0.50	B3 B4 ES1			(m) (m)	" mOD	(m) - 0.19 - 0.35 		MADE GROUND: Ve		with traces	of orange sandy		0.5
1.00 1.00 - 3.00 1.20	ES2 B5 U7	Ublow=37 0%		Dry	/	- 1.00 - - - - - -			n slightly sandy slightly nd is fine to coarse. Gra				1.0
2.00 - 2.45	SPT (C)	N=14 (2,2/3,4,3,4) Hi 0267	ammer SN =	Dry	/	- 							2.0
3.00 - 4.00 3.00 - 3.45	B6 SPT (C)	N=16 (2,4/4,4,4,4) Ha 0267	ammer SN =	Dry	/	- - 3.00 - - - -			ndy very gravelly CLAY se. Gravel is angular fir				3.0
4.00 - 4.44		N=50 (9,12/50 for 29 Hammer SN = 0267 Seepage at 4.00m	0mm)	4.0	0	- 4.00 			End of Borehole at	4.00m		▼	4.0
						- - - - - - - - -							5.5
													6.5
						-							7.0
itruck at (m)		r Strikes) Time (min) Rose to	(m) From		ng Detai		Remarks	cavated to 1.20m.					
4.00 Casing D	4.00	Water Added		,	2 (111)		mano pit ex	cavaleu to 1.20m.					
								on Reason	/bedrock		ast Updated	V	AGS

		GEOT	AY ECH			roject N 0-0749		Client:	t Name: Elm Grov Cavan Co s Rep: Alan Tray	ounty Coun		rs Ltd.		ehole ID 3H05
Metho		Plant Used	Top (m)	-		oordina	tes	Final De	anth: 4.00 m	Start Date:	24/08/2020	Driller: PL	She	et 1 of 1
Light Perc	ussion	Dando Terrier	0.00	4.00	24	12159.10 05282.30		Elevatio			24/08/2020	Logger: SF		ile: 1:40
Depth (m)	Sample / Tests	Field Records	5	Casing Wat Depth Dep (m) (m	ter Lev oth n) mC		Depth (m)	Legend		Des	cription		Water	Backfill
0.18 - 0.30 0.30 - 1.20 0.50	B3 B4 ES1						0.18 0.30		MADE GROUND: CC MADE GROUND: Gr MADE GROUND: Ve medium cobble cor coarse. Gravel is sul	rey subangular ery soft light b itent and fragi	rown sandy grav ments of plastic.	elly CLAY with		0.5
1.00	ES2					-								1.0
1.20 - 2.50 1.20 - 1.65	B5 SPT (C)	N=15 (2,2/4,4,5,2) Hai 0267	mmer SN =	Dr	Ŷ	- 1	1.20		Firm to stiff orangis is fine to coarse. Gr			gravelly CLAY. Sand ium.		1.5
2.00		Ublow=63 50%		Dr	ſy	- - - - -								2.0
2.50 - 4.00	B6					- 2	2.50		Stiff grey slightly sa angular fine to coar		LAY. Sand is fine	to coarse. Gravel is		2.5
3.00 - 3.45	SPT (C)	N=23 (2,3/3,3,4,13) Ha = 0267	ammer SN	Dr	Ŷ									3.0
4.00 - 4.44		N=50 (7,8/50 for 295n Hammer SN = 0267	nm)	Dr	Ŷ	- - - - - - -	4.00			End of Bore	ehole at 4.00m			4.C
						- - - -								4.5
						-								5.0
						-								5.5
														6.0
						-								6.5
						-								7.0
	Wate	r Strikes		Chisell	ing Det	tails		Remarks						
Struck at (m) Ci)) Time (min) Rose to (m) From		ō (m)		:mm)	Hand pit ex	ccavated to 1.20m. ter at 3.70m on comp	letion.				
Casing D To (m)	etails Diameter	Water Added From (m) To (m)												
									on Reason	/bedrock		Last Updated 01/10/2020		AGS

						Project		Project	t Name: Elm Grov	ve			B	orehole	: I
	8	GEOT				20-07	49A	Client: Cavan County Council				BH06	j		
								Client'	s Rep: Alan Tray	ynor Consultin	ng Engineer	s Ltd.			
Methe Light Perc		Plant Used Dando Terrier	Top (m)	Base		Coordin	nates	Final De	epth: 4.00 m	Start Date: 24	4/08/2020	Driller: PL		heet 1 of	
Light i cic			0.00			242161	.53 E						-	Scale: 1:4	40
						305272	.55 N	Elevatio	mOD	End Date: 24	4/08/2020	Logger: SF		FINAL	-
Depth (m)	Sample / Tests	Field Records	5	Casing Depth (m)	Water Depth (m)	Level mOD	Depth (m)	Legend		Descript	tion		Water	Backfill	
17 - 0.80	В3					-	0.17		MADE GROUND: CO MADE GROUND: Lig		slightly clavey	subangular fine to			
50	ES1					-			coarse GRAVEL with						
50	551					[
80 - 2.00	B4					-	0.80		Soft orangish brown				_		
00	ES2					-			cobble content. Sar medium.	nd is fine to coarse	e. Gravel is su	bangular fine to			
20	U7	Ublow=56 50%		1.20	Dry	-									
						Ē									
															l
0 - 2.70	В5					L	2.00								
00 - 2.45		N=15 (2,3/2,4,4,5) Hai 0267	mmer SN =		Dry	-			Firm to stiff light br Gravel is subangula			is fine to coarse.			
		0207				-									
70 - 4.00	B6					-	2.70								
0 - 4.00	DO						2.70		Stiff grey slightly sa is fine to coarse. Gr			ble content. Sand			
0 - 3.45	SPT (C)	N=15 (2,2/2,3,5,5) Hai 0267	mmer SN =		Dry	-									
		0207				-									
						-									
						-									
95 - 3.98	SPT (C)	N=50 (25 for 15mm/5	0 for		Dry	-	4.00								
		20mm) Hammer SN =	0267			-	4.00			End of Borehol	le at 4.00m				
						-									
						-									
						-									
						[
						-									
						-									
						-									
						F									
						E									
						[
						-									
						-									
						-									
						-									
		n Chuilean		<u></u>		Dat-"		Derro 1							•
ck at (m) C		r Strikes n) Time (min) Rose to (m) From (elling To (g Details m) Time (Remarks Hand pit ex	cavated to 1.20m.						
				T					ry on completion.						
									., en completion.						
			_												
Casing D To (m)	Details Diameter	Water Added From (m) To (m)													
							ļ	Torminati	ion Reason			Last Updated	1		-
										/hodro-li				AG	
								rerminated	d on possible boulder,	DEULOCK		01/10/2020			1

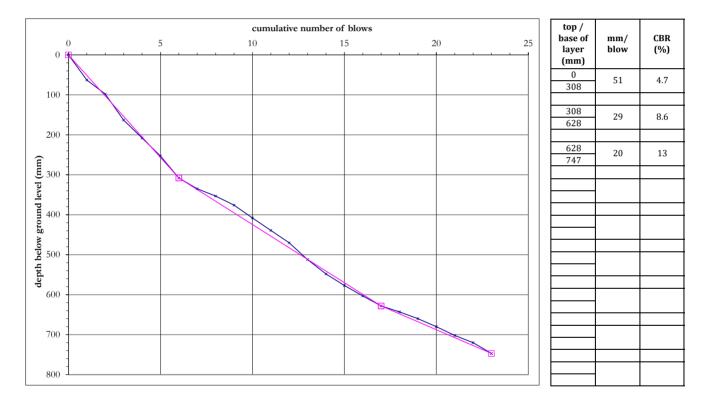
		GEOT	AY ECH			oject No. Project Name: Elm Grove 0-0749A Client: Cavan County Council Client's Rep: Alan Traynor Consulting Engineers Ltd.			Client: Cavan County Council			
Metho Light Perci		Plant Used Dando Terrier	Top (m) 0.00	Base (m 5.00	n) Co	ordinates	Final De	epth: 5.00 m	Start Date: 26/08/2	2020 Driller: PL	Sheet 1 of 1	
2.8.01 0.01						2160.95 E 5240.07 N	Elevatio	on: mOD	End Date: 26/08/2	2020 Logger: SF	Scale: 1:40 FINAL	
Depth (m)	Sample / Tests	Field Record	s	Casing Wate Depth Dept (m) (m)	h Leve		Legend		Description		ਸ਼ੇ ਸ਼ੇ Backfill	
0.30 - 1.20 0.50	B2 ES1					0.15		fragments of brick. \coarse. Soft orangish browr	n sandy gravelly CLAY wi	ravel is subangular fine to	0.5	
1.20	U10	Ublow=34 40%		Dr	4	- 1.20 - - -			n slightly sandy slightly g subangular fine to medi	gravelly CLAY. Sand is fine um.	1.0	
2.00 2.00 - 3.00 2.00 - 2.45	D6 B3 SPT (S)	N=3 (1,1/1,0,1,1) Han 0267	nmer SN =	Dr	4	- 2.00 			brown slightly gravelly sa Dangular fine to mediun	andy CLAY. Sand is fine to 1.		
3.00 3.00 - 3.90 3.00 - 3.45	D7 B4 SPT (S)	N=27 (2,3/4,9,8,6) Ha 0267	mmer SN =	Dr	4	- - 3.00 - - -		Stiff brown slightly (is subangular fine to		d is fine to coarse. Gravel		
3.90 - 5.00 4.00 4.00 - 4.45	B5 D8 SPT (S)	N=35 (3,8/9,8,7,11) H = 0267	ammer SN	Dr	4	- - 3.90 - - -		Very stiff grey slight Gravel is angular fin	ly sandy gravelly CLAY. S e to coarse.	and is fine to coarse.	4.0	
4.50 - 4.80		N=50 (6,12/50 for 150 Hammer SN = 0267)mm)	Dr	4	- - - -					4.5 -	
5.00	D9					- 5.00 - - -	<u>-+</u>		End of Borehole at 5.	00m	- 5.0	
						- - - - -					- - 6.0 —	
											6.5 - - - -	
						-					7.0	
Struck at (m) Ca		n) Time (min) Rose to	(m) From (Chiselli (m) To		Time (hh:mm)		cavated to 1.20m.				
Casing D To (m)	etails Diameter	Water Added From (m) To (m)									
								i on Reason d on possible boulder/	/bedrock	Last Updated 01/10/2020	AGS	

		Project No.	Project Name:			Probe ID
		20-0749A	Elm Grove			
	GEOTECH	Coordinates		DP01		
	GLOTLETT	242134.28 E	Cavan County Cound			
Method:		305251.59 N	Client's Representa			Sheet 1 of 1
Dynamic Probing			Alan Traynor Consult			Scale: 1:50
Probe Type:		Elevation	Final Depth:	Date:	Operator:	FINAL
DPSH-B		mOD	6.20	25/08/2020		
Depth (m)	10	20	Blows/100mm 30	40		Torque (Nm)
_	5					
	7 8					
-	4 5					
-	33					
- 1						
-						
-						
-						
- 2						
-						
-						
- 3						
-						
-						
-						
- 4						
	3					
_	6					
-	4 5					
5						
-	9 10 12					
-						
_	1	14 3 3				
- 6	1	3 15 16				
	11					50
-						
-						
- 7						
- 1						
-						
-						
-						
- 8						
-						
-						
- 9						
-						
F						
-						
Fall Height:	Remarks:					
750 mm						
Hammer Mass:						
64 kg Cone Diameter:	-					
51 mm						AGS

		Project No.	Project Name:			Probe ID	
	CALISEWAY	20-0749A	Elm Grove	DP02			
	GEOTECH	Coordinates		Client:			
		242137.39 E	Cavan County Cour				
Method:		305296.90 N	Client's Represent			Sheet 1 of 1	
Dynamic Probing				Ilting Engineers Ltd.		Scale: 1:50	
Probe Type: DPSH-B		Elevation	Final Depth:	Date:	Operator:	FINAL	
DPSп-в	1	mOD	6.00	26/08/2020			
Depth (m)	10	20	Blows/100mm	40		Torque (Nm)	
-	2						
	4 8						
-							
	6						
- 1	2						
-							
-							
-	2 2						
- 2							
	2 3						
-	22						
-							
-							
- 3							
-							
-							
-							
- 4							
-							
-	22						
_							
- 5							
-	6 7						
-	9 10 10						
	12	14					
- 6		17		32		50	
- Ŭ						50	
-							
-							
-							
- 7							
E E							
-							
-							
8							
-							
- 							
-							
- 9							
-							
-							
-							
-							
Fall Height:	Remarks:						
750 mm	Remarks:						
Hammer Mass:	-						
64 kg						[
Cone Diameter:						AGS	
51 mm							

		Project No.	Project Name:			Probe ID
		20-0749A	Elm Grove			
	GEOTECH	Coordinates				DP03
	GLOTLETT	242163.64 E	Cavan County Coun			
Method:		305254.58 N	Client's Representa			Sheet 1 of 1
Dynamic Probing			Alan Traynor Consu			Scale: 1:50
Probe Type:		Elevation	Final Depth:	Date:	Operator:	FINAL
DPSH-B		mOD	3.60	26/08/2020		FINAL
Depth (m)	10	20	Blows/100mm	40		Torque (Nm)
-	6					
-			24	•		
-		17		9		
-		15	21			
- 1						
-	3					
-	2					
	2 3					
2	2					
-						
-	11					
-	9 7 11					
- 3	8					
	9 9 9	3				
-	9 10					50
-						
- 4						
_						
-						
- 5						
-						
-						
6						
6						
-						
-						
_						
- 7						
-						
-						
-						
8						
-						
-						
-						
9						
_						
-						
-						
-						
	Remarks:					
750 mm						
Hammer Mass: 64 kg						
Cone Diameter:						
51 mm						AGS

APPENDIX C INDIRECT IN-SITU CBR TEST RESULTS



Project Number	20-0749A	
Project Name	Elm Grove	CAUSEWAY
Site Location	Cavan	GEOTECH
		-

Test Number	CBR01	Date Tested	26/08/2020
Depth bgl (m)		Weather	Dry

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4. CBR calculated using the TRL equation: log10(CBR) = 2.48 - 1.057 x log10(mm/blow) iaw IAN 73/06 Rev 1 2009.

Surface preparation	Description of surface material
N/A	

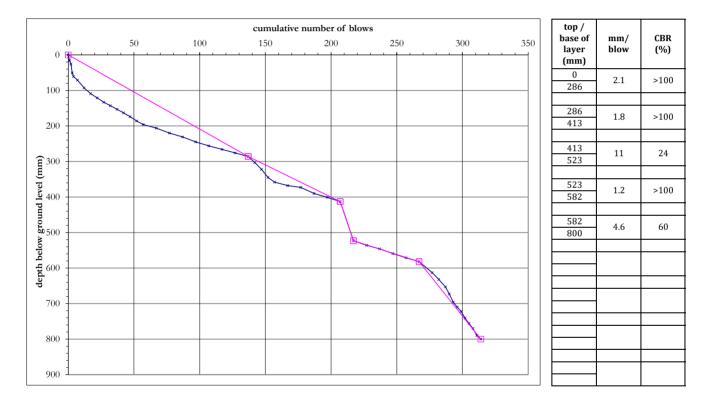
CBR	Min: 4.7	The selection of layers is based on visual interpretation of the data. The insitu DCP reading (mm/blow) and CBR values are valid at the time of testing;
Range	Max: 13	variation in moisture content or other factors may affect the insitu value.

Deviation(s) from standard procedure	None
Observations and comments	

Darren O'Mahony Director Approved Name and Appointment

Jam O luno 1.

October 2020



Project Number	20-0749A	
Project Name	Elm Grove	CAUSEWAY
Site Location	Cavan	GEOTECH
		-

Test Number	CBR02	Date Tested	26/08/2020
Depth bgl (m)		Weather	Dry

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4. CBR calculated using the TRL equation: log10(CBR) = 2.48 - 1.057 x log10(mm/blow) iaw IAN 73/06 Rev 1 2009.

Surface preparation	Description of surface material
N/A	

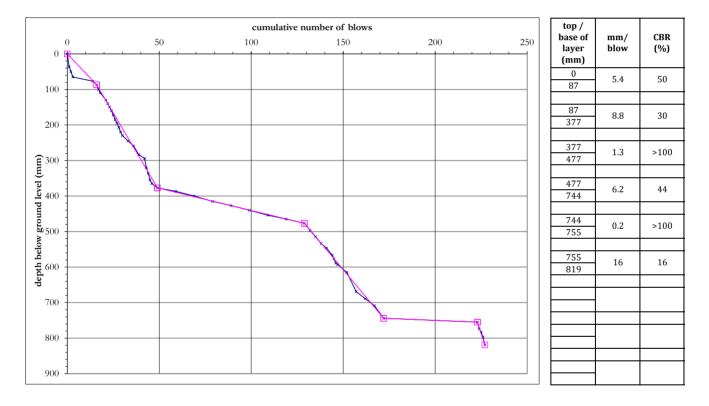
CBR	Min: 24	The selection of layers is based on visual interpretation of the data. The insitu DCP reading (mm/blow) and CBR values are valid at the time of testing;
Range	Max: >100	variation in moisture content or other factors may affect the insitu value.

Deviation(s) from standard procedure	None
Observations and comments	

Jam O lito 1.

Approved Name and Appointment

October 2020



Project Number	20-0749A	
Project Name	Elm Grove	CAUSEWAY
Site Location	Cavan	GEOTECH
		-

Test Number	CBR03	Date Tested	26/08/2020
Depth bgl (m)		Weather	Dry

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4. CBR calculated using the TRL equation: log10(CBR) = 2.48 - 1.057 x log10(mm/blow) iaw IAN 73/06 Rev 1 2009.

Surface preparation	Description of surface material
N/A	

CBR Min: 16	Min: 16	The selection of layers is based on visual interpretation of the data. The insitu DCP reading (mm/blow) and CBR values are valid at the time of testing;
Range	Max: >100	variation in moisture content or other factors may affect the insitu value.

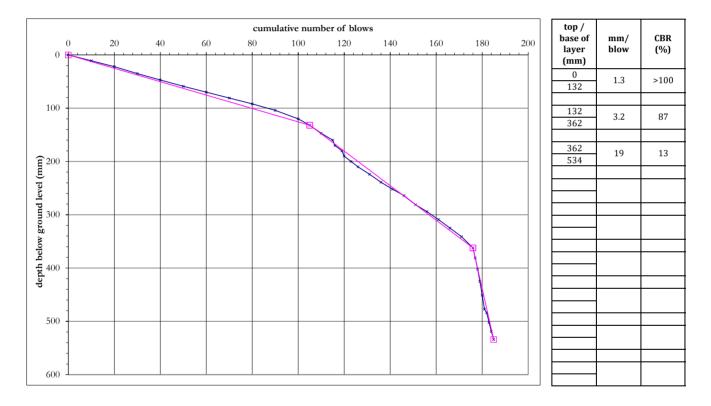
Deviation(s) from standard procedure	None
Observations and comments	
-	

Darren O'Mahony Director

Approved Name and Appointment

Jam O luno 1.

October 2020


Site 01 Version 7

Project Number	20-0749A	
Project Name	Elm Grove	CAUSEWAY
Site Location	Cavan	GEOTECH
		-

Test Number	CBR04	Date Tested	26/08/2020
Depth bgl (m)		Weather	Dry

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4. CBR calculated using the TRL equation: log10(CBR) = 2.48 - 1.057 x log10(mm/blow) iaw IAN 73/06 Rev 1 2009.

Surface preparation	Description of surface material
N/A	

CBR	Min: 13	The selection of layers is based on visual interpretation of the data. The insitu DCP reading (mm/blow) and CBR values are valid at the time of testing;
Range	Max: >100	variation in moisture content or other factors may affect the insitu value.

Deviation(s) from standard procedure	None
Observations and comments	

	0	
Darren O'Mahony	Jam O llito 7.	
Director	Our O Willing.	

Approved Name and Appointment

October 2020

Site 01 Version 7

APPENDIX D LABORATORY TEST RESULTS

HEAD OFFICE

Registered in Northern Ireland. Company Number: NI610766

REGIONAL OFFICE

Causeway Geotech (IRL) Ltd Unit 3 Balbriggan Business Park, Balbriggan Co Dublin, Ireland, K32 EH36 ROI: +353 (0)1 526 7465

> Registered in Ireland. Company Number: 633786

www.causewaygeotech.com

SOIL AND ROCK SAMPLE ANALYSIS LABORATORY TEST REPORT

30 September 2020

Project Name:	Elm Grove
Project No.:	20-0749a
Client: Cavan County Council	
Engineer:	Alan Traynor Consulting Engineers Ltd

We are pleased to attach the results of laboratory testing carried out for the above project. This memo and its attachments constitute a report of the results of tests as detailed in the Contents page(s).

The attached results complete the testing requested and we would therefore wish to confirm that samples will be retained without charge for a period of 28 days from the above date after which they will be appropriately disposed of unless we receive written instructions to the contrary prior to that date.

We trust our report meets with your approval but if you have any queries or require additional information, please do not hesitate to contact the undersigned.

topen Woton

Stephen Watson Laboratory Manager Signed for and on behalf of Causeway Geotech Ltd

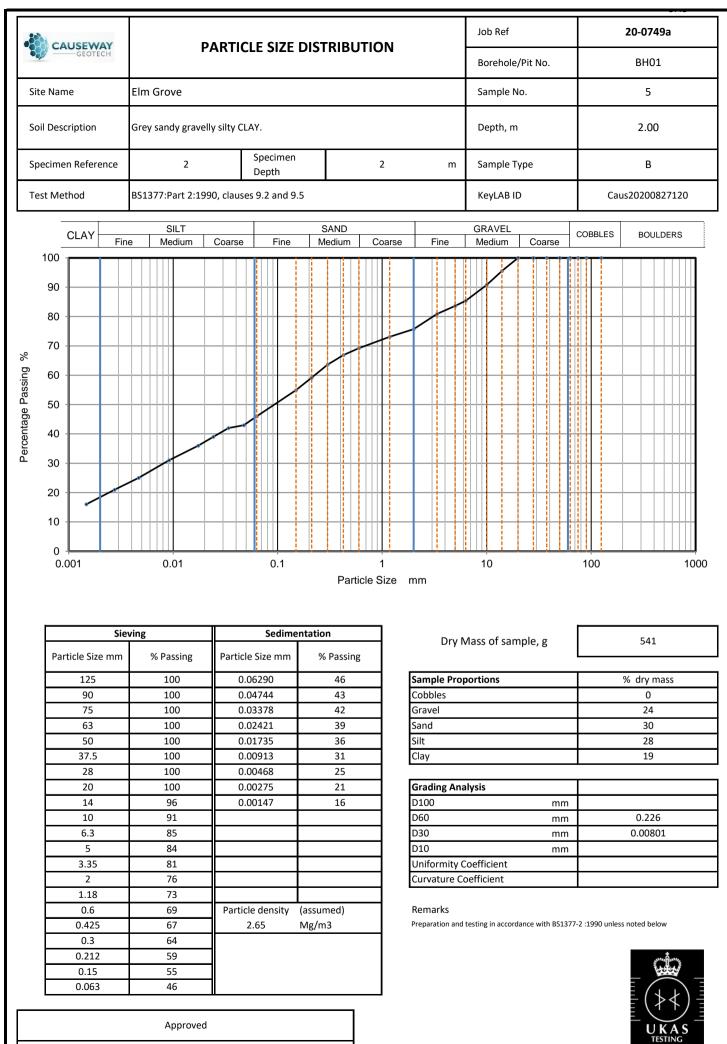
1

Project Name: Elm Grove

Report Reference: Schedule 1

The table below details the tests carried out, the specifications used, and the number of tests included in this report.

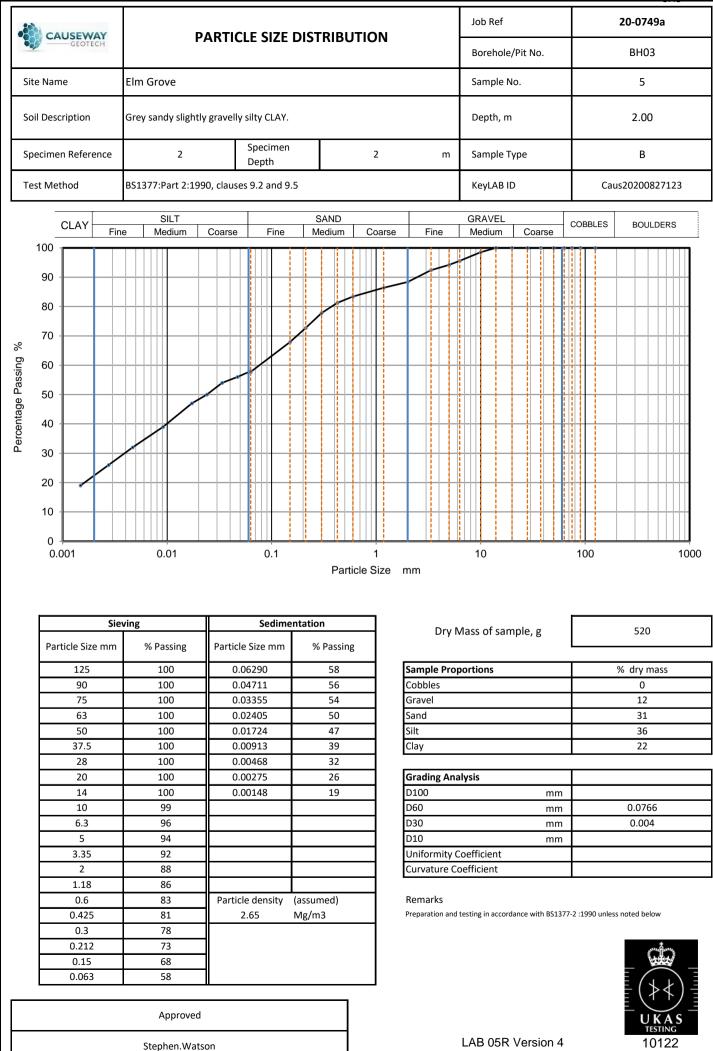
Tests marked with* in this report are not United Kingdom Accreditation Service (UKAS) accredited and are not included in Causeway Geotech Limited's scope of UKAS Accreditation Schedule of Tests. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

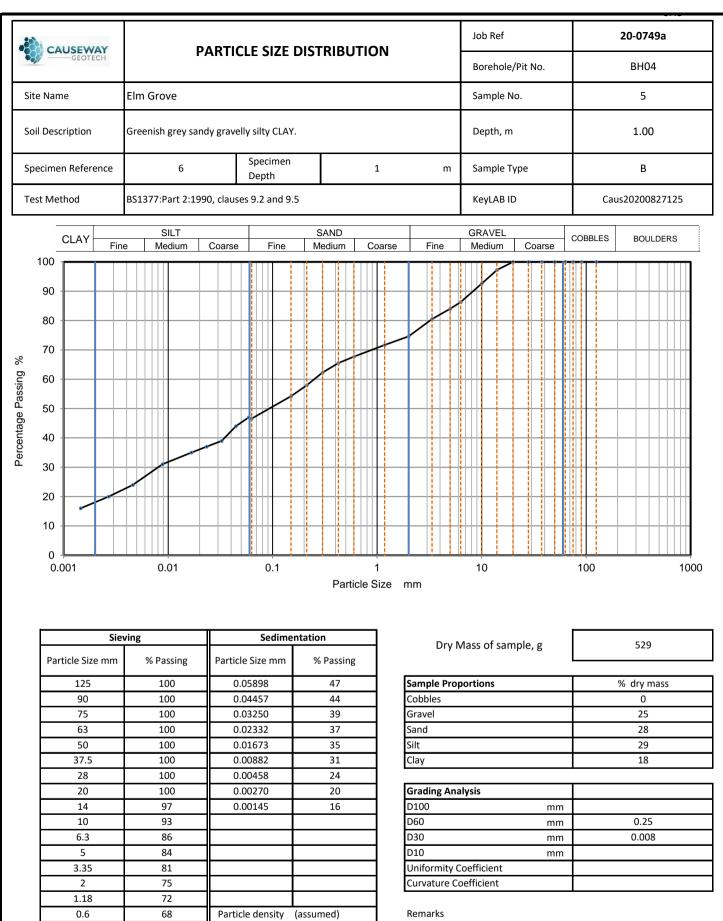

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	No. of results included in the report
SOIL	Moisture Content of Soil	BS 1377-2: 1990: Cl 3.2	7
SOIL	Liquid and Plastic Limits of soil-1 point cone penetrometer method	BS 1377-2: 1990: Cl 4.4, 5.3 & 5.4	7
SOIL	Particle size distribution - wet sieving	BS 1377-2: 1990: Cl 9.2	7
SOIL	Particle size distribution - sedimentation hydrometer method	BS 1377-2: 1990: Cl 9.5	7
SOIL	Undrained shear strength – triaxial compression without measurement of pore pressure (loads from 0.12 to 24 kN)	BS 1377-7: 1990: Cl 8	2

SUB-CONTRACTED TESTS

In agreement with Client, the following tests were conducted by an approved sub-contractor. All subcontracting laboratories used are UKAS accredited.

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	No. of results included in the report
SOIL – Subcontracted to Chemtest Ltd <i>(UKAS 2183)</i>	pH Value of Soil		7
SOIL – Subcontracted to Chemtest Ltd <i>(UKAS 2183)</i>	Sulphate Content water extract		7


CAUSEWAY GEOTECH		Summary of Classification Test Results													
Project No).			Project	Project Name										
2	20-074	9a			Elm Grove										
Hole No	o.	Ref	Sar Top	nple Base	Туре	Soil Description	Dens bulk	dry	w	Passing 425µm	LL	PL		Particle density	Casagrande Classification
			-				Mg/m	13 	%	%	%	%	%	Mg/m3	
BH01		10	1.20		U	Grey sandy gravelly silty CLAY.			13.0	67	32 -1pt	16	16		CL
BH02		10	3.00		D	Grey sandy gravelly silty CLAY.			21.0	78	32 -1pt	16	16		CL
BH03		9	2.00		D	Grey sandy slightly gravelly silty CLAY.			20.0	84	37 -1pt	19	18		CI
BH04		5	1.00		В	Greenish grey sandy gravelly silty CLAY.			18.0	76	33 -1pt	15	18		CL
BH05		7	2.00		U	Brownish grey sandy gravelly silty CLAY.			18.0	72	37 -1pt	17	20		СІ
BH06		7	1.20		U	Brownish grey sandy gravelly silty CLAY.			15.0	78	40 -1pt	18	22		CI
BH07		7	3.00		D	Greenish grey sandy gravelly silty CLAY.			11.0	70	32 -1pt	15	17		CL
All tests pe	erform	ied ir	accord	lance wit	th BS1	377:1990 unless specified	otherwis	e						LAE	01R Version 4
	ensity te		nent unles	s :	Liquid I 4pt con		e density nall pyknom	neter	Date F	Printed 30/09/20	20	Appr	oved	Ву	
	d - water - imme		acement n water			asagrande method gj - ga ngle point test	s jar			20,00/20		Stephen.Watson		UKAS TESTING 10122	



LAB 05R Version 4

10122

Specimen Reference	Elm Grove Grey sandy grave 2 BS1377:Part 2:19 SILT	ARTICLE SIZE		3	m	Borehole/Pit No. Sample No. Depth, m Sample Type	BH02 7 3.00 B	
Soil Description Specimen Reference Test Method CLAY Fine 100 90 80 70	Grey sandy grave 2 BS1377:Part 2:19 SILT	Specimen Depth 90, clauses 9.2 and 9.	SAND	3	m	Depth, m Sample Type	3.00	
Specimen Reference Test Method	2 BS1377:Part 2:19 SILT	Specimen Depth 90, clauses 9.2 and 9.	SAND	3	m	Sample Type		
Test Method	BS1377:Part 2:19	Depth 90, clauses 9.2 and 9.	SAND	3	m		В	
CLAY Fine 100 90 80 70	SILT		SAND					
		Coarse Fine				KeyLAB ID	Caus20200827121	
100 90 80 70				Coarse	Fine	GRAVEL Medium Coarse	COBBLES BOULDERS	
80								
70								
70								
50								
40								
30								
20								
10								
10								
0.001	0.01	0.1	Parti	1 icle Size n	nm	10	100 100	
Siev	ving	Sedimentation			Dry N	lass of sample, g	516	
Particle Size mm	% Passing	Particle Size mm	% Passing	g				
125	100	0.06181	52		Sample Prop	oortions	% dry mass	
90 75	100 100	0.04664 0.03345	49 46		Cobbles Gravel		0 20	
63	100	0.03345	46		Sand		20	
50	100	0.01719	40		Silt		33	
37.5	100	0.00911	33		Clay		20	
28 20	100 100	0.00467 0.00274	27 22	I	Grading Ana	lysis		
14	100	0.00147	17		D100	mm		
10 6.3	97 92	╢────┤			D60 D30	mm		
5	89	╢───┤			D30 D10	mm mm		
3.35	86				Uniformity C	oefficient	1	
2	80 77	╢────┤		Ľ	Curvature Co	pefficient		
0.6	77	Particle density	(assumed)		Remarks			
0.425	69		Mg/m3			testing in accordance with BS13	77-2 :1990 unless noted below	
0.3	66		_					
0.212	62 59	╢						
0.063	52	1						
	Approved							

Remarks

Mg/m3

2.65

Preparation and testing in accordance with BS1377-2 :1990 unless noted below

Approved

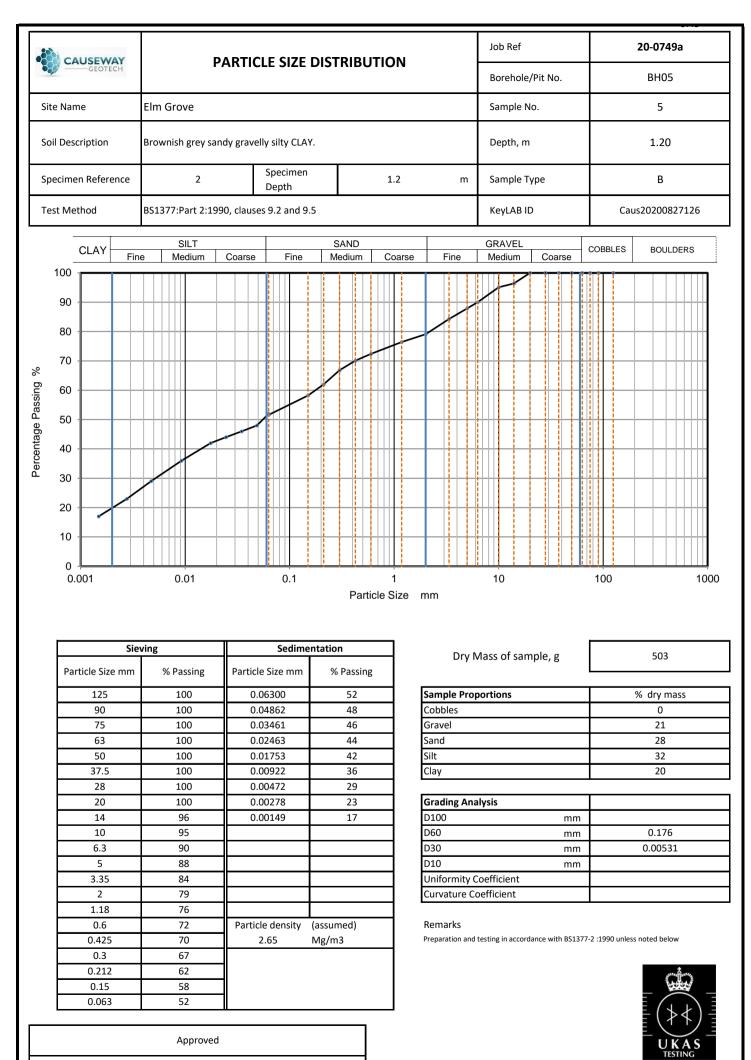
66

62

58

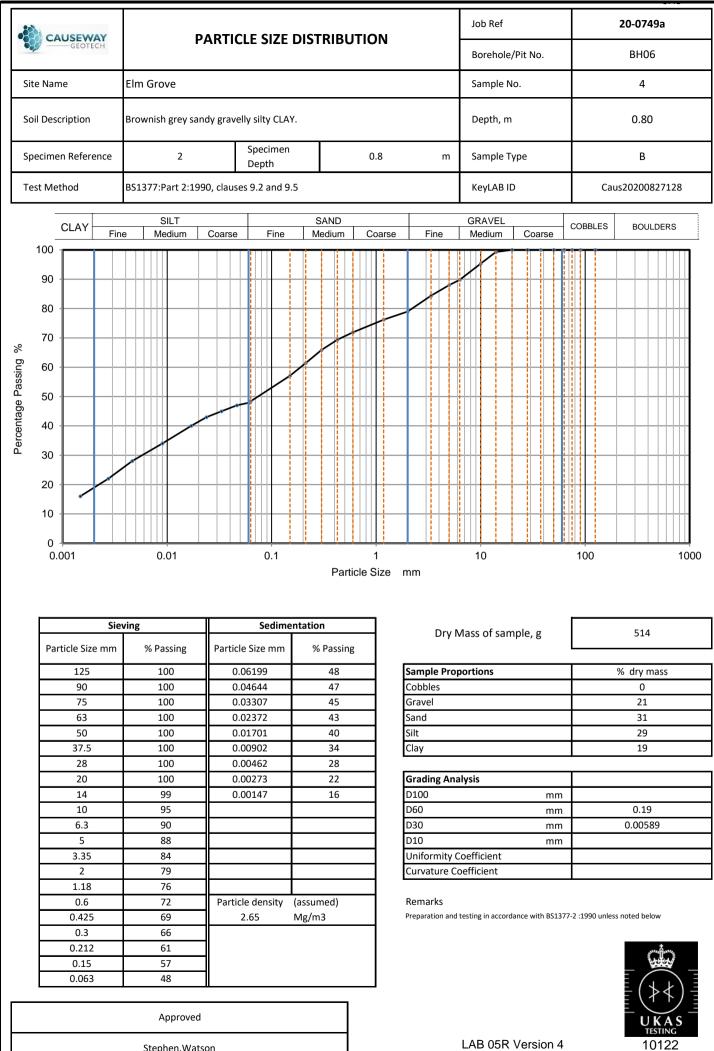
54

47

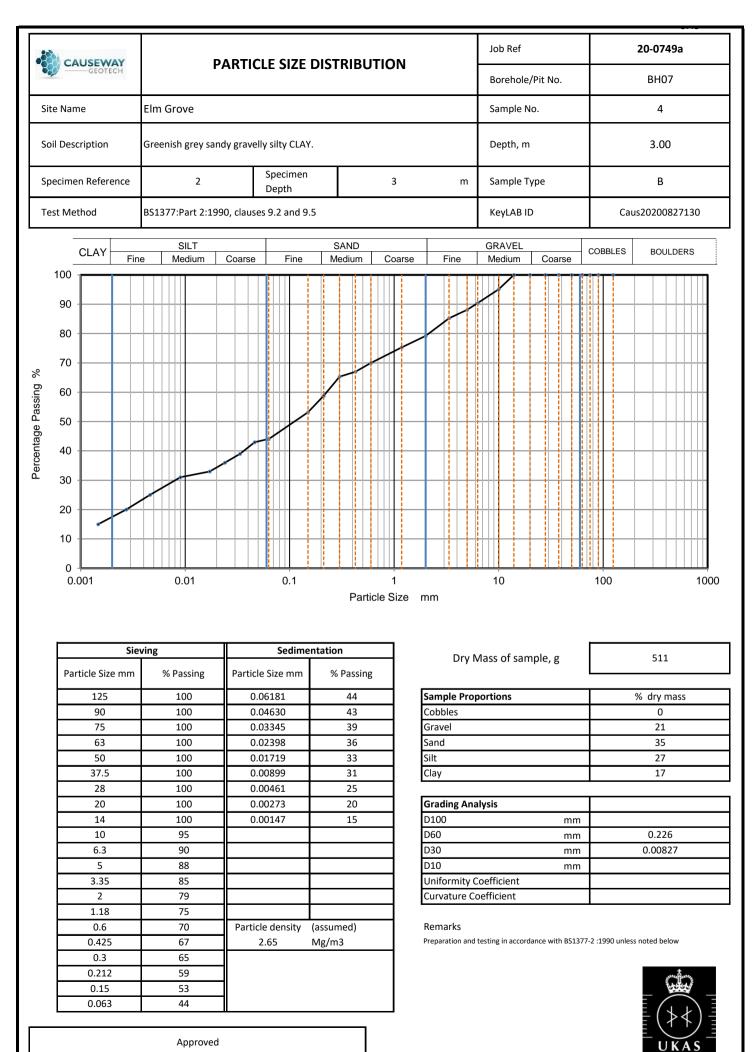

0.425

0.3 0.212

0.15

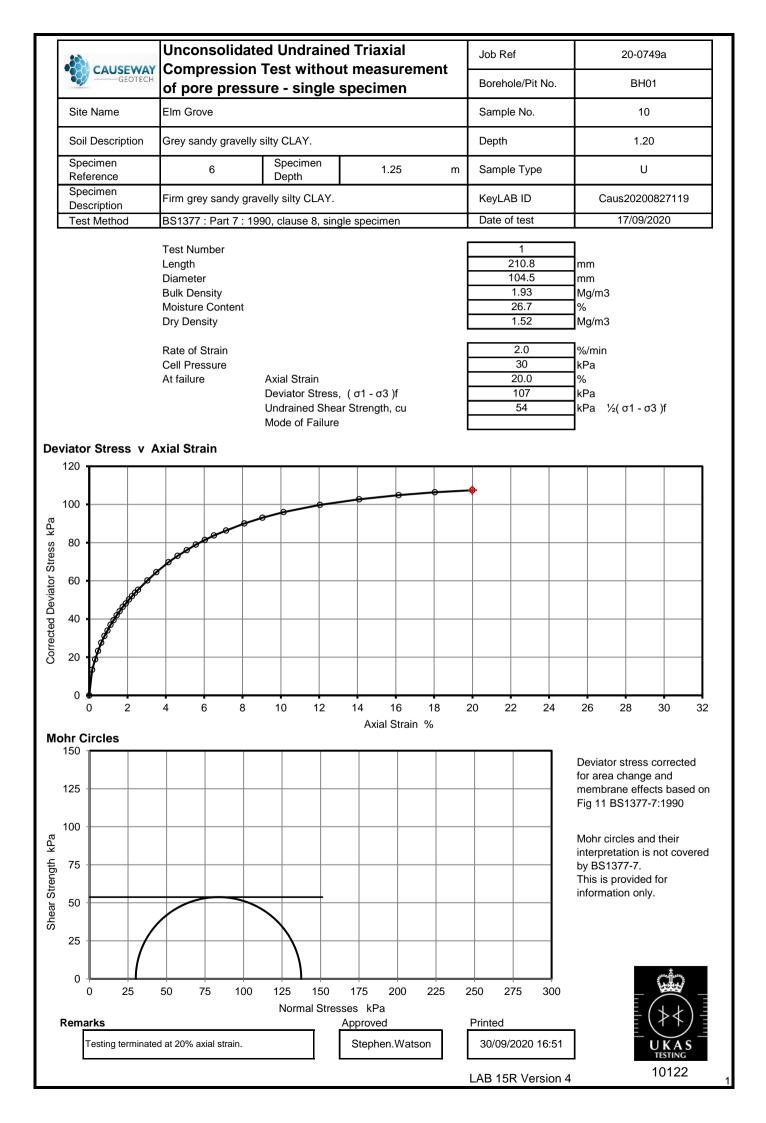

0.063

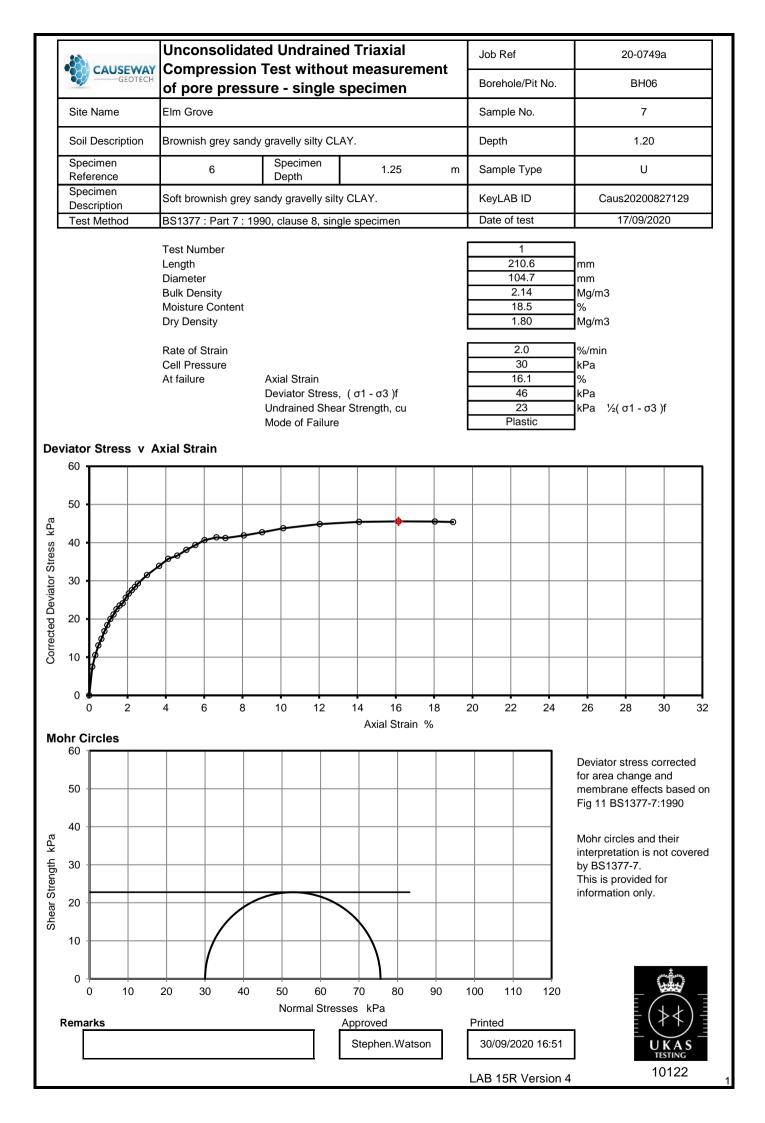
Stephen.Watson



LAB 05R Version 4

10122




LAB 05R Version 4

LAB 05R Version 4

10122

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	20-22669-1		
Initial Date of Issue:	03-Sep-2020		
Client	Causeway Geotech Ltd		
Client Address:	8 Drumahiskey Road Balnamore Ballymoney County Antrim BT53 7QL		
Contact(s):	Carin Cornwall Colm Hurley Darren O'Mahony Gabriella Horan Joe Gervin John Cameron Lucy Newland Martin Gardiner Matthew Gilbert Neil Haggan Paul Dunlop Sean Ross Stephen Franey Stephen McCracken Stephen Watson Stuart Abraham Thomas McAllis		
Project	20-0749A Elm Grove		
Quotation No.:		Date Received:	26-Aug-2020
Order No.:		Date Instructed:	28-Aug-2020
No. of Samples:	1		
Turnaround (Wkdays):	5	Results Due:	04-Sep-2020
Date Approved:	03-Sep-2020		
Approved By:			
My May			
Detailer	Chung Harvoy, Technical Managar		

Details:

Glynn Harvey, Technical Manager

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com Project: 20-0749A Elm Grove

Client: Causeway Geotech Ltd		Che	mtest Jo	ob No.:	20-22669
Quotation No.:	(Chemte	st Sam	ple ID.:	1054539
Order No.:		Clie	nt Samp	le Ref.:	1
		Sa	ample Lo	ocation:	BH05
			e Type:	SOIL	
			oth (m):	0.50	
			Date Sa		25-Aug-2020
				os Lab:	COVENTRY
Determinand	Accred.	SOP	Units		
АСМ Туре	U	2192		N/A	-
Asbestos Identification	U	2192	%	0.001	No Asbestos Detected
ACM Detection Stage	U	2192		N/A	-
Moisture	Ν	2030	%	0.020	11
рН	U	2010		4.0	8.5
Boron (Hot Water Soluble)	U	2120		0.40	0.59
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	0.46
Cyanide (Free)	U	2300	0 0	0.50	< 0.50
Cyanide (Total)	U	2300	mg/kg	0.50	< 0.50
Thiocyanate	U	2300	mg/kg	5.0	< 5.0
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	1.7
Sulphate (Total)	U	2430	%	0.010	0.32
Arsenic	U	2450	mg/kg	1.0	14 0.29
Cadmium	U	2450 2450	mg/kg mg/kg	0.10	40
Chromium Copper	U	2450	mg/kg	0.50	29
Mercury	U	2450	mg/kg	0.30	< 0.10
Nickel	U	2450	mg/kg	0.50	60
Lead	U	2450		0.50	23
Selenium	U	2450	mg/kg	0.20	< 0.20
Zinc	U	2450	mg/kg	0.50	80
Chromium (Hexavalent)	N	2490		0.50	< 0.50
Organic Matter	U	2625	%	0.40	1.7
Aliphatic TPH >C5-C6	Ν	2680	mg/kg	1.0	< 1.0
Aliphatic TPH >C6-C8	Ν	2680	mg/kg	1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680		1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	0 0	1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0

Project: 20-0749A Elm Grove

Client: Causeway Geotech Ltd		Chemtest Job No.:					
Quotation No.:	(Chemte	est Sam	ple ID.:	1054539		
Order No.:		Clie	nt Samp	le Ref.:	1		
		Sa	ample Lo		BH05		
		Sample Type:					
		Top Depth (m):					
			Date Sa	ampled:	25-Aug-2020		
			Asbest	os Lab:	COVENTRY		
Determinand	Accred.	SOP	Units	LOD			
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0		
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0		
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0		
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0		
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10		
Naphthalene	U	2700	mg/kg	0.10	< 0.10		
Acenaphthylene	U	2700	mg/kg	0.10	< 0.10		
Acenaphthene	U	2700	mg/kg	0.10	< 0.10		
Fluorene	U	2700	mg/kg	0.10	< 0.10		
Phenanthrene	U	2700	mg/kg	0.10	< 0.10		
Anthracene	U	2700	mg/kg	0.10	< 0.10		
Fluoranthene	U	2700	mg/kg	0.10	< 0.10		
Pyrene	U	2700	mg/kg	0.10	< 0.10		
Benzo[a]anthracene	U	2700	mg/kg	0.10	< 0.10		
Chrysene	U	2700	mg/kg	0.10	< 0.10		
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	< 0.10		
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	< 0.10		
Benzo[a]pyrene	U	2700	mg/kg	0.10	< 0.10		
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	< 0.10		
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	< 0.10		
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	< 0.10		
Total Of 16 PAH's	U	2700	mg/kg	2.0	< 2.0		
Benzene	U	2760	µg/kg	1.0	< 1.0		
Toluene	U	2760	µg/kg	1.0	< 1.0		
Ethylbenzene	U	2760	µg/kg	1.0	< 1.0		
m & p-Xylene	U	2760	µg/kg	1.0	< 1.0		
o-Xylene	U	2760	µg/kg	1.0	< 1.0		
Total Phenols	U	2920	mg/kg	0.30	< 0.30		

Test Methods

SOP	Title	Parameters included	Method summary		
2010	pH Value of Soils	рН	pH Meter		
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.		
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930		
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES		
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry		
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.		
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.		
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.		
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.		
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.		
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.		
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection		
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)		
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.		
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.		

Report Information

Key

U	UKAS accredited
Μ	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
	Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested
	Uncertainty of measurement for the determinands tested are available upon request
	None of the results in this report have been recovery corrected
	All results are expressed on a dry weight basis
	The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	20-22998-1		
Initial Date of Issue:	03-Sep-2020		
Client	Causeway Geotech Ltd		
Client Address:	8 Drumahiskey Road Balnamore Ballymoney County Antrim BT53 7QL		
Contact(s):	Carin Cornwall Colm Hurley Darren O'Mahony Gabriella Horan Joe Gervin John Cameron Lucy Newland Martin Gardiner Matthew Gilbert Neil Haggan Paul Dunlop Sean Ross Stephen Franey Stephen McCracken Stephen Watson Stuart Abraham Thomas McAllis		
Project	20-0749a Elm Grove		
Quotation No.:		Date Received:	28-Aug-2020
Order No.:		Date Instructed:	28-Aug-2020
No. of Samples:	1		
Turnaround (Wkdays):	5	Results Due:	04-Sep-2020
Date Approved:	03-Sep-2020		
Approved By:			
Uly May			
Deteile	Chunn Harvey, Technical Manager		

Details:

Glynn Harvey, Technical Manager

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Project: 20-0749a Elm Grove

Client: Causeway Geotech Ltd		Che	ntest Jo	ob No.:	20-22998
Quotation No.:	(Chemte	st Sam	ple ID.:	1056036
Order No.:		Clie	nt Samp	le Ref.:	1
		Sa	ample Lo		BH02
				e Type:	SOIL
			Top Dep		0.50
			Date Sa		26-Aug-2020
				os Lab:	COVENTRY
Determinand	Accred.	SOP	Units	LOD	
АСМ Туре	U	2192		N/A	-
Asbestos Identification	U	2192	%	0.001	No Asbestos Detected
ACM Detection Stage	U	2192		N/A	-
Moisture	Ν	2030	%	0.020	19
рН	U	2010		4.0	7.3
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	0.62
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	0.040
Cyanide (Free)	U	2300		0.50	< 0.50
Cyanide (Total)	U	2300	0 0		< 0.50
Thiocyanate	U	2300	0	5.0	< 5.0
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	5.6
Sulphate (Total)	U	2430	%	0.010	0.10
Arsenic	U	2450	mg/kg	1.0	7.8
Cadmium	U	2450	mg/kg	0.10	0.39
Chromium Copper	U	2450 2450	0	1.0 0.50	<u> </u>
Mercury	U	2450	0 0	0.30	0.20
Nickel	U	2450	00	0.10	45
Lead	U	2450	0 0	0.50	74
Selenium	U	2450	mg/kg	0.20	0.34
Zinc	U	2450		0.50	89
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50
Organic Matter	U	2625	%	0.40	2.6
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680		1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	0 0	1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0
Total Aliphatic Hydrocarbons	Ν	2680	0 0	5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	00	1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	0 0	1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	0 0	1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0

Project: 20-0749a Elm Grove

Client: Causeway Geotech Ltd		Che	mtest Jo	ob No.:	20-22998
Quotation No.:	(Chemtest Sample ID.:			1056036
Order No.:		Client Sample Ref.: Sample Location:			1
					BH02
				е Туре:	SOIL
			Тор Dep		0.50
			Date Sa		26-Aug-2020
			Asbest	os Lab:	COVENTRY
Determinand	Accred.	SOP	Units	LOD	
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10
Naphthalene	U	2700	mg/kg	0.10	< 0.10
Acenaphthylene	U	2700		0.10	< 0.10
Acenaphthene	U	2700	mg/kg	0.10	< 0.10
Fluorene	U	2700	mg/kg	0.10	< 0.10
Phenanthrene	U	2700	mg/kg	0.10	< 0.10
Anthracene	U	2700	mg/kg	0.10	< 0.10
Fluoranthene	U	2700	mg/kg	0.10	< 0.10
Pyrene	U	2700	mg/kg	0.10	< 0.10
Benzo[a]anthracene	U	2700	mg/kg	0.10	< 0.10
Chrysene	U	2700	mg/kg	0.10	< 0.10
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	< 0.10
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	< 0.10
Benzo[a]pyrene	U	2700	mg/kg	0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	< 0.10
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	< 0.10
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	< 0.10
Total Of 16 PAH's	U	2700	mg/kg	2.0	< 2.0
Benzene	U	2760	µg/kg	1.0	< 1.0
Toluene	U	2760	µg/kg	1.0	< 1.0
Ethylbenzene	U	2760	µg/kg	1.0	< 1.0
m & p-Xylene	U	2760	µg/kg	1.0	< 1.0
o-Xylene	U	2760	µg/kg	1.0	< 1.0
Total Phenols	U	2920	mg/kg	0.30	< 0.30

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key

U	UKAS accredited
Μ	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
	Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested
	Uncertainty of measurement for the determinands tested are available upon request
	None of the results in this report have been recovery corrected
	All results are expressed on a dry weight basis
	The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Final Report			Tel: 01638 606070 Email: info@chemtest.com
Report No.:	20-23522-1		
Initial Date of Issue:	08-Sep-2020		
Client	Causeway Geotech Ltd		
Client Address:	8 Drumahiskey Road Balnamore Ballymoney County Antrim BT53 7QL		
Contact(s):	Carin Cornwall Colm Hurley Darren O'Mahony Gabriella Horan Joe Gervin John Cameron Lucy Newland Martin Gardiner Matthew Gilbert Neil Haggan Paul Dunlop Sean Ross Stephen Franey Stephen McCracken Stephen Watson Stuart Abraham Thomas McAllis		
Project	20-0749A Elm Grove		
Quotation No.:		Date Received:	03-Sep-2020
Order No.:		Date Instructed	l: 03-Sep-2020
No. of Samples:	7		
Turnaround (Wkdays):	5	Results Due:	09-Sep-2020
Date Approved:	08-Sep-2020		
Approved By:			
Uly May			
Deteller	Chung Hamiou Technical Marsarer		

Details:

2183

Glynn Harvey, Technical Manager

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

<u> Results - Soil</u>

Project: 20-0749A Elm Grove

Client: Causeway Geotech Ltd		Cher	ntest Jo	ob No.:	20-23522	20-23522	20-23522	20-23522	20-23522	20-23522	20-23522
Quotation No.:	Chemtest Sample ID.:			1058597	1058598	1058599	1058600	1058601	1058602	1058603	
Order No.:	Client Sample Ref .:		10	7	5	5	7	7	7		
	Sample Location:		BH01	BH02	BH03	BH04	BH05	BH06	BH07		
	Sample Type:		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL		
	Top Depth (m):		1.20	3.00	2.00	1.00	2.00	1.20	3.00		
			Date Sa	ampled:	02-Sep-2020						
Determinand	Accred.	SOP	Units	LOD							
Moisture	N	2030	%	0.020	16	14	17	13	13	14	9.8
рН	U	2010		4.0	7.6	8.6	8.0	8.7	8.5	8.7	8.7
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	0.020	< 0.010	< 0.010	< 0.010	0.028	0.028	< 0.010

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES

Report Information

Key

1.09	
U	UKAS accredited
Μ	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
	Comments or interpretations are beyond the scope of UKAS accreditation
	The results relate only to the items tested
	Uncertainty of measurement for the determinands tested are available upon request
	None of the results in this report have been recovery corrected
	All results are expressed on a dry weight basis
	The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

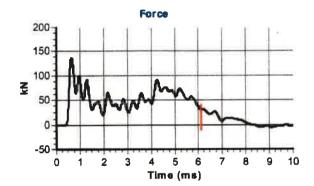
APPENDIX E SPT HAMMER ENERGY MEASUREMENT REPORT

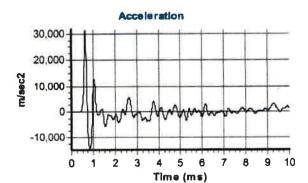
SPT Hammer Energy Test Report

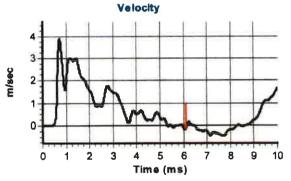
in accordance with BSEN ISO 22476-3:2005

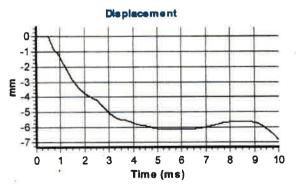
RH19 4QA	Test Operator:	NPB
West Sussex	File Name:	.T1.spt
Stuart Way East Grinstead	Report Date:	03/03/2020
Keeble House	Test Date:	22/02/2020
Southern Testing	SPT Hammer Ref:	.T1

Instrumented Rod Data


Diameter d _r (mm):	54
Wall Thickness t _r (mm):	6.0
Assumed Modulus E _a (GPa):	200
Accelerometer No.1:	6458
Accelerometer No.2:	9607


SPT Hammer Information


Hammer Mass m (kg):	63.5
Falling Height h (mm):	760
SPT String Length L (m):	10.0


Comments / Location

BALLEYMONEY

Calculations

Energy Ratio E _r (%	6):	77	
Measured Energy E _{meas}	(J):	366	
Theoretical Energy Etheor	(J):	473	
Area of Rod A (mm2):		9 05	

The recommended calibration interval is 12 months

Signed: Neil Burrows Title: Field Operations Manager