

Project Number: P2970

Appendix 9.3

Generic Quantitative Risk Assessment

Cavan Regional Sports Campus,

Client: McAdam Design

Issued: March 2024

MCL Consulting Ltd Unit 5, Forty Eight North Duncrue Street Belfast BT3 9BJ 028 9074 7766 www.mclni.com

CONTENTS

1.0	INTRODUCTION	2
1.1 1.2 1.3	PRA Summary Site Setting Site Walkover	2 3 5
2.0	GROUND INVESTIGATION TO INFORM GQRA	9
2.1 2.2 2.3 2.4 2.5	Scope of Works Monitoring Wells and Return Monitoring Visits Selected Laboratory Analysis Summary of Ground Conditions Groundwater Levels	9 9 10 12 13
3.0	ASSESSMENT OF RESULTS	16
3.1 3.2 3.3 3.4 3.5 3.6	Soil Chemical Assessment Review of Soil Laboratory Results Asbestos Screening Review of Groundwater Laboratory Results Review of Surface Water Laboratory Results Ground Gas Assessment	16 16 16 16 16 17
4.0	REVISED CONCEPTUAL MODEL	20
5.0 5.1	SUMMARY AND RECOMMENDATIONS Summary	21 21
5.2	Other Recommendations	21

Figures

Figure	1: Figure 1: Site Location Map
Figure	2: Aerial Image of the Site Boundary
Figure	3: Separation of Site into field sections
Figure	4: Groundwater Flow Map
Figure	5: Groundwater Levels
Figure	6: Table 8.5 from CIRIA C665

Tables

Table 1: Summary of Adjacent Land Use Table 2: Soil Samples Table 3: Surface Water Sampling Table 4: Revised CSM

Appendices

APPENDIX A: Development Plan APPENDIX B: Investigative Locations APPENDIX C: Surface Water Sampling Locations APPENDIX D: Borehole Logs APPENDIX E: Soil Laboratory Results APPENDIX F: Groundwater Laboratory Results APPENDIX G: Surface Water Laboratory Results APPENDIX H: Ground Gas Data APPENDIX I: Geological Cross Sections

1.0 INTRODUCTION

MCL Consulting Ltd (MCL) was appointed by McAdam Design on behalf of Cavan County Council to undertake a Tier 2 Generic Quantitative Risk Assessment (GQRA) for the proposed development of a sports campus to be located on lands north, south and west of Royal School Cavan and west of Breffni Park GAA grounds, County Cavan. This follows on from a recommendations provided in a previously completed Preliminary Risk Assessment (PRA) and a Preliminary Sources Study Report (PSSR).

The current proposal includes;

- Indoor sports complex to include sports halls with spectator seating, fitness studios, changing facilities, reception, café and ancillary accommodation.
- 7 no. outdoor sports pitches.
- Covered sports arena with playing pitch, spectator seating and other ancillary accommodation.
- Ancillary sporting facilities include 8 lane athletics track and cricket practice nets.
- New vehicular access / junction and closure of Park Lane/Dublin vehicular junction, relocation of existing Breffni Park turnstiles to facilitate reconfiguration of Park Lane, bridge structure, internal roads, cycle/pedestrian paths, associated car/bus/cycle parking, electric charge points and streetlighting.
- Pedestrian access points of Kilnavarragh Lane and Dublin Road.
- Hard and soft landscaping including acoustic fencing, wildlife habitat area/corridors, artificial badger-sett, walking trails and other ancillary works such as spectator stands, retaining walls, fencing and ball stop fencing, team shelters, toilet block, floodlighting, signage, drainage infrastructure including attenuation tanks, SuDs and culverting of a minor watercourse, storage space, ESB Substation, ancillary accommodation and all associated site works to accommodate the development.
- The proposed bridge is a single span integral reinforced concrete bridge, supported on piled foundations.

1.1 PRA Summary

The PRA *Preliminary Risk Assessment and Preliminary Sources Study Report,* recommended that a ground investigation to quantify the risks to human health and the environment is required under LRCM due to identification of multiple areas of possible land contamination due to previous development. This includes areas of land raise in a northern area of the site, an area of disturbance/clearance associated with a playing field and a car park development in the central area of the site. The mapped presence of alluvium associated with the Cavan River, presents a possible presence of ground gas due to organic content, therefore the footprints of buildings need to be investigated to enable assessment of the need for gas protection.

It was recommended that a ground investigation comprising of a combination of installed shallow monitoring boreholes (for groundwater levels, quality and ground gas monitoring) and shallow trial pitting. These boreholes will be drilled into the underlying drift deposits to establish groundwater levels, existing groundwater quality, to allow for the collection of soil samples and ground gas data.

1.2 Site Setting

The site, c.28ha, is located in central Cavan, County Cavan, on lands surrounding Royal School, College Street and west/northeast of Kingspan Breffni (IGR: 241769, 303932). A site location map is presented as Figure 1 and the site area is presented as Figure 2.

Figure 1: Site Location Map

The site currently occupied by agricultural land adjacent to Royal College, County Cavan and Breffni Park GAA. The surrounding area is characterised as largely residential, with mixed recreational and commercial land uses surrounding. A summary of the properties / land-use immediately adjacent to the site is presented in Table 1.

Orientation from Site	Neighbouring Property/ Land Use beyond Site Boundaries
North	Sport fields are directly to the north of the site with residential/commercial
	properties beyond this leading into Cavan town.
South	Developed sport fields lie directly to the south with adjacent agricultural
	fields. Lands beyond this are dominated by agricultural lands with small
	residential properties within.
East	Residential/commercial properties with agricultural properties beyond.
West	Agricultural/residential properties are adjacent to the site with Swellan
	Lough beyond this. Lands beyond this are for agricultural/residential use.

Figure 2: Aerial Image of the Site Boundary

1.3 Site Walkover

A site walkover was undertaken by MCL on 20th April 2023. A tributary of the Cavan River enters the site via a culvert under the Kilnavarragh Lane, flowing southwards in an open wooded channel, before flowing southeast into the Cavan River. This tributary roughly dissects the site into east and west. Therefore, for ease of description, the site can be divided into lands east of the tributary and lands west of the tributary, as shown on Figure 3. The site consists of seventeen separate fields also shown on Figure 3.

Figure 3: Separation of Site into field sections

1.3.1 East of the Tributary

This area of site can be accessed via access road into Royal School Cavan. From this access road, there is an all-weather gravel sports pitch used by the school. To the west of this pitch is the tributary which dissects the site. South of the pitch is Field 1, which is greenfield land. The topography slopes to the south/southeast in this area, where the field borders the Cavan River. There was an area of marshy land in the southwest of this field along the tributary. Drainage pipes from Breffni Park grounds, were identified flowing into the Cavan River. Looking south from the recently constructed Aggregate Access Laneway allowing access to farmlands north of new school building, ponded water is noted on the surface of the laneway.

North of Field 1 is a gravel pitch currently used by Royal School Cavan as a Car Park in the south and a Physical Education ground. Slightly upgradient of the Gravel Pitch is a grass field (Field 2). East of Field 2, beyond the site boundary and encroaching into Field 4 is an active construction site, where the construction of a new 2-storey school building structure has recently been completed. Groundworks within this area include a land cut / reprofiling and land-raising in an area behind the new-constructed retaining structure.

To the north of the new school building, within Field 3 and Field 4, localised land-stripping has been undertaken to create a new hardcore access lane. This leads northwards, opening up into a large area of very recent minor land raise. A c.1m thick layer of what appears to be mainly clay materials arising from the school development cut has been spread out over agricultural lands to the north of the school development. The western area of Field 3 and the eastern area of Field 4 have remained mainly greenfield.

Field 5 is located slightly upgradient of Field 4 and is greenfield land. There is then a steep decline in topography eastwards towards the Cavan River.

1.3.2 West of the Tributary

Field 6 and Field 7 are located west of the tributary. The topography increases west from Field 2 and Field 3 to Field 6 and Field 7. The topography decreases from Field 6 towards Field 7. Field 6, Field 7 and Field 8 are all greenfield land with no previous activities occurring in these areas.

Field 9 can be accessed via a newly-constructed bridge across the Cavan River located within the grounds of Breffni Park GAA grounds car park. The land slopes upgradient in a north west direction from the bridge. In the east of this field, a car park associated with Cavan GAA is currently under construction. A GAA playing pitch has recently been constructed along the south/south west of Field 9. This would have required a programme of ground disturbance cut and fill / alteration of land profile to create a flat platform on what have originally been sloping lands.

The field boundary and associated small area of woodland observed to exist between Field 9 and Field 11, as observed by comparing aerial photography dated between 2021 and 2022, has recently been removed creating a strip of bare / disturbed cleared ground now partly occupied by the new playing field.

7

In the northwest corner of Field 9, along the boundary with Field 8, a low flowing watercourse enters the site flowing southeast.

Field 10 located upgradient of Field 11, the boundaries of which is separated by a ditch with limited water flow. Field 12 is also separated from Field 10 and Field 11 by a ditch, with limited, stagnant water. Field 10, Field 11 and Field 12 (scrub) are all greenfield land with no evidence of former land use activity.

Field 13-17 are located in the southernmost regions of the site. The walkover of these fields indicated that the vast majority of areas are all greenfield land, with no evidence of contaminating land use evident. There is a clear decrease in elevation between Fields 16 and 17 and the lower Fields 13-15, with the lower fields meeting the Cavan River on the eastern boundary. Fields 13-15 showed extensive flooding during the site visit, likely from field drains present along the field boundaries. The flooding covered a large portion of the eastern sections of the fields.

2.0 GROUND INVESTIGATION TO INFORM GQRA

2.1 Scope of Works

Following on from the potentially complete pollutant linkages identified in the Initial Conceptual Model, an intrusive investigation was undertaken by MCL. The investigation was undertaken to obtain site specific environmental data to aid confirmation of the potential pollution linkages identified in the initial conceptual site model.

The ground investigation was carried out by Northwest Geotech between 22nd January to 26th January 2024 and 1st February 2024.

Works comprised;

- Drilling of 25no. Shallow Boreholes (SBH01-SBH25)
- Installation of 25no. groundwater and Ground Gas Monitoring wells (SBH01-SBH25)
- 4no. return gas and groundwater monitoring visits;
- Sampling and analysis of selected soils, groundwater and surface water;
- Interpretation of analytical results and determination of relevant assessment criteria;
- Production of site Generic Quantitative Risk Assessment (GQRA);

The locations of the investigative boreholes are presented in Appendix B. Locations were chosen based on allowing for a wide range of areas to be analysed.

The works were undertaken in accordance with all relevant guidance including Land Contamination Risk Management (LCRM) and Guidance on the Management of Contaminated Land and Groundwater at EPA Licensed Sites.

2.2 Monitoring Wells and Return Monitoring Visits

Groundwater and ground gas monitoring wells were installed in the shallow windowless sampler boreholes SBH01-SBH25. Each installation was installed with 50mm (ID) HDPE. The response zones are detailed on the borehole logs in Appendix D.

2.2.1 Groundwater and Ground Gas Data Collection

Groundwater samples were collected on 12th February 2024 from SBH02, SBH07, SBH09, SBH12, SBH16, SBH19, SBH20, SBH22, SBH24 and SBH25.

2.2.2 Surface Water Data Collection

Six Surface Water samples were collected on 25th January 2024 from SW1 to SW6.

2.2.3 Ground Gas Data Collection

Ground gas data was collected at SBH01 to SBH25 on 16th February, 20th February, 26th February and 1st March 2024.

2.3 Selected Laboratory Analysis

29no. soil samples were sent to UKAS accredited Eurofins Chemtest Ltd for selected analysis. The samples are presented in Table 2. All samples were sent for analysis of; CLEA Heavy Metals, PAH 16, TPH CWG, BTEX, VOCs, Cyanide (Free and Total) Phenol, SOM, pH, Sulphate, and Asbestos Screen. Samples SBH02 (0.5m), SBH04 (0.50m), SBH06 (1.0m), SBH09 (1.0m) and SBH11 (0.50m) were also screened for PCBs, as they are located in the west of the site and an historical railway line was located west of the site. The soil laboratory results are included in Appendix E.

Location I.D	Depth (mbgl)
SBH01	0.5
SBH01	1.0
SBH02	0.5
SBH03	0.5
SBH04	0.5
SBH04	2.0
SBH06	1.0
SBH07	0.5
SBH08	0.5
SBH09	1.0
SBH10	2.0
SBH11	0.5
SBH14	0.5
SBH14	1.0
SBH15	0.5
SBH15	2.0

Table 2: Soil Samples

SBH16	0.5
SBH17	1.0
SBH19	0.5
SBH19	2.0
SBH21	1.0
SBH22	0.5
SBH22	1.0
SBH23	0.5
SBH23	2.0
SBH24	1.0
SBH25	1.0
SBH25	1.9

2.3.1 Groundwater Sampling and Laboratory Analysis

Groundwater samples were obtained on 12th February 2024 from SBH02, SBH07, SBH09, SBH12, SBH16, SBH19, SBH20, SBH22, SBH24 and SBH25.

Groundwaters from all sample points were analysed for:

• Low Level CLEA Metals: (As, Cd, Cr, Cu, Pb, Hg, Ni, Se, Zn, V, Be, Ba, B, Cr VI, Cr III, Fe, Ca, Mg, Na, K, Mn), Total Cyanide, Free Cyanide, PAH 16, TPH CWG, BTEX, VOCs, Phenols, pH, SO4, Electrical Conductivity, BOD, COD, Ammoniacal Nitrogen, NO₂, NO₃, Colour, Odour, Cl, PO4, Total Alkalinity, Total Hardness, TDS, TOC and Total Surfactants. The laboratory analysis was undertaken by UKAS accredited laboratory Eurofins Chemtest Ltd. The groundwater laboratory results are included in Appendix F.

2.3.2 Surface Water Sampling and Laboratory Analysis

6no. surface water samples were obtained on 25th January 2024 at sample points (SW1 to SW6), as presented in Appendix C and Table 3.

I.D	Description
SW1	Cavan River: Upflow
SW2	Cavan River: Midflow. After stream outfall

Table 3: Surface Water Sampling

SW3	Cavan River: Midflow
SW4	Cavan River: Downflow
SW5	Stream: Upflow
SW6	Stream: Downflow prior to discharge into Cavan River

Surface Water analysis from SW1 to SW6 sample points included:

• Low Level CLEA Metals: (As, Cd, Cr, Cu, Pb, Hg, Ni, Se, Zn, V, Be, Ba, B, Cr VI, Cr III, Fe, Ca, Mg, Na, K, Mn), Total Cyanide, Free Cyanide, PAH 16, TPH CWG, BTEX, VOCs, Phenols, pH, SO4, Electrical Conductivity, BOD, COD, Ammoniacal Nitrogen, NO₂, NO₃, Colour, Odour, Cl, PO4, Total Alkalinity, Total Hardness, TDS, TOC and Total Surfactants. The laboratory analysis was undertaken by UKAS accredited laboratory Eurofins Chemtest Ltd. The surface water laboratory results are included in Appendix G.

2.4 Summary of Ground Conditions

All information given in the following sections is based on the ground conditions encountered during the site intrusive works.

The ground conditions observed during the intrusive investigation are detailed on the exploratory hole logs presented in Appendix D and Geological Cross Sections presented in Appendix I.

Ground conditions identified onsite through shallow borehole logs taken by *Northwest Geotech* are described below. The Boreholes were drilled to depths of between 2.2m and 4.0m. The shallowest borehole was SBH24 which was terminated at 2.2m on possible bedrock/boulder. The deepest boreholes were SBH12, SBH16, SBH17, SBH18, SBH20 and SBH22, which were all terminated at 4.0m also on possible bedrock/boulder.

The ground conditions identified through shallow borehole logs were characterised as either all natural ground of Clay and/or Gravel, or Made Ground overlying Clay. There were no odours or visual evidence of contamination reported.

2.4.1 Made Ground

Made Ground was located at SBH05, SBH12, SBH13, SBH18 and SBH25. Made Ground was shallowest at SBH18 where it was found to a depth of 0.35m and was deepest at SBH13

where it was found to a depth of 2.30m at termination of the borehole. The Made Ground consisted of mainly gravel/clay with occasional red brick and quarry stones.

2.4.2 Clay

Natural Clay was located at every location, except SBH25 which was terminated in the Made Ground at 2.30m, either as the entire strata at the location or underlying the Made Ground at the above locations which consisted of Made Ground in the upper layer. The natural Clay was generally described as gravelly silty Clay in all locations.

2.4.3 Water Strikes

Water was struck in multiple shallow boreholes at depths of 2.0m or 3.0m over the sampling period with water rising after a 20-minute period at all locations but to differing depths. At SBH02, SBH03, SBH04, SBH06, SBH07, SBH12 and SBH19 water was struck at 2.0m and rose to 1.4m 1.5m, 1.9m 1.7m, 1.2m, 1.1m in a 20-minute period respectively. At SBH19 water was struck at 3.0m and rose to 2.0m in a 20-minute period.

2.5 Groundwater Levels

Groundwater monitoring wells were installed in SBH01-SBH25. Spot dips were taken at each location on 16th February, 20th February, 26th February and 1st March 2024.

2.5.1 Groundwater Level Monitoring and Flow Patterns

A groundwater flow map for the general conditions in the natural gravelly Clay unit has been produced from available site-specific groundwater levels from SBH01-SB25, and is presented in Figure 4. Groundwater levels are presented in Figure 5. It can be seen that groundwater levels remained relatively consistent over the monitoring period.

The groundwater flow map and hydrographs indicate a general west to east groundwater flow direction over lands to the west of the Cavan River, and a general east to west groundwater flow direction over lands to the east of the Cavan River. This confirms, as expected, that all shallow groundwater flow is toward the Cavan River. The Cavan River will therefore receive baseflow from the shallow groundwaters at the site. The shallow groundwater system underlying the site is therefore hydraulically connected to the Cavan River.

Figure 4: Groundwater Flow Map

3.0 ASSESSMENT OF RESULTS

The following sections present screening of the soil and water results in order to identify any exceedances which may present a risk to Human Health or the Environment.

3.1 Soil Chemical Assessment

All locations were compared against the Public Open Spaces (Park) 1%SOM LQM/S4Uls.

No Lead screening value is currently published by LQM, therefore the Category 4 Screening Level (C4SL) of 300mg/kg for Public Open Space (Park) has been used. These Lead screening values were referenced from *SP1010: Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination – Policy Companion Document (Department for Environment, Food and Rural Affairs December 2014).*

3.2 Review of Soil Laboratory Results

No exceedances were detected in any of the soil samples. There were minor detections of TPH CWG, however no exceedances of the Soil Guidance Values. There were no detections of PAH 16, VOCs, PCBs or Phenols. Overall, there are no significant concerns regarding the underlying soils quality and they are not considered a Human Health risk.

3.3 Asbestos Screening

Asbestos screening was undertaken at all locations. There were no positive detections of Asbestos.

3.4 Review of Groundwater Laboratory Results

Groundwater samples were obtained on 12th February 2024 from SBH02, SBH07, SBH09, SBH12, SBH16, SBH19, SBH20, SBH22, SBH24 and SBH25. The groundwater laboratory results are provided in Appendix F.

All groundwater results were compared against available Drinking Water Standards (DWS). The following exceedances were detected;

- Iron DWS of 200ug/I exceeded at SBH22 300ug/I and at SBH25 280ug/I
- Nickel DWS of 20ug/l exceeded at SBH22 37ug/l and SBH25 29ug/l

These exceedances are not considered environmentally significant. It is possible that these exceedances are naturally occurring. The groundwaters were located within the natural gravelly Clay.

There were no detections of Phenol, Cyanide, Hydrocarbons or VOCs in any of the groundwater samples. Overall, there is no concern with groundwater quality.

3.5 Review of Surface Water Laboratory Results

The Surface Water laboratory results are included in Appendix G. Surface Water samples were obtained on 25th January 2024 from SW1 to SW6.

All Surface Water results were compared against available Environmental Quality Standards (EQS). The following exceedances were detected:

- Chromium EQS of 4.7ug/l exceeded at SW5 5.9ug/l
- Copper EQS of 1.0ug/l exceeded at SW1 4.3ug/l, SW2 5.3ug/l, SW3 3.7ug/l, SW4 4.9ug/l, SW5 1.8ug/l and at SW6 3.2ug/l. The EQS of 1ug/l is a relatively low EQS based on trying to achieve a Good standard for the watercourse. These results are significantly below the DWS of 2,000ug/l.
- Iron EQS of 1,000ug/l exceeded at SW2 1500ug/l and at SW6 1,500ug/l
- Lead EQS of 1.2ug/l exceeded at SW2 1.5ug/l, SW4 1.6ug/l and SW6 1.9ug/l
- Manganese EQS of 123ug/l exceeded at SW2 360ug/l, SW5 140ug/l and at SW6 250ug/l

These metals are likely to be naturally occurring in the watercourse, given that there are no nearby anthropogenic sources. The exceedances are unlikely to be environmentally significant. There were no detections of, Phenol, Cyanide, Hydrocarbons or VOCs in any of the surface water samples. There are no significant changes in water quality between up flow, midflow and downflow locations. Overall, there is no concern with surface water quality.

3.6 Ground Gas Assessment

Ground gas monitoring was undertaken on 16th, 20th, 26th and 1st March 2024 across 25no. monitoring boreholes within the site boundary. Results are presented in Appendix H. During the monitoring period, atmospheric pressure ranged from 988mb to 1021mb across falling, rising and constant pressures.

3.6.1 Gas Screening Values

The recorded Methane and Carbon Dioxide concentrations and the source of the gas have been reviewed in accordance with the guidance in C665, BS8576 and BS8485. Borehole Hazardous Gas Flow Rates (Qhg), also known as Gas Screening Values (GSVs), have been calculated based on the gas data collected across the 4no. monitoring visits at each location. Borehole hazardous gas flow rates for each borehole have been calculated based on:

Qhg = Flow rate (I/hr) x (gas concentration /100)

with the Peak Flow rate and Peak concentration of Methane used, whilst the Steady State flow rate and Steady concentration of Carbon Dioxide is used.

Table 8.5 of CIRIA C665 (Figure 6) presents the Hazardous Gas Flow rates for each Risk Classification.

Characteristic Situation	Limiting Volume Flow CH4/CO2 (I/hr)	Additional Limiting Factors	Source of Gas Generation	Risk Classification
1	<0.07	Methane <1% and Carbon Dioxide <5%	Natural soils with low organic content	Very Low Risk
2	<0.7	Borehole air flow rate >70I/hr increase to Characteristic Situation 4	Natural soil, high peat/organic content	Low Risk
3	<3.5	Borehole air flow rate >70l/hr increase to Characteristic Situation 4	Old landfill, inert waste, mine working flooded	Moderate Risk
4	<15	Quantitative risk assessment required to evaluate scope of protection measures	Mine working susceptible to flooding, completed landfill, inert waste (WMP 26B criteria)	Moderate to High Risk
5	<70		Mine working unflooded inactive	High Risk
6	>70		Recent landfill site	Very High Risk

Figure 6: Table 8.5 from CIRIA C665

3.6.2 Ground Gas Summary

Review of the gas monitoring data identifies that Carbon Dioxide was not detected on site. A minimal concentration of Methane at 0.1%vol was detected across all monitoring rounds of the site with the same 0.1% detection for LEL.

Steady flow was measured between 0.2-0.3l/h across all monitoring points on site with Oxygen levels remaining between 21.0% and 21.3%.

The site has been classified as CS1 Very Low Risk as all Hazardous Gas Flow rates were <0.07I/hr. Therefore, no ground gas mitigation measures are required.

4.0 REVISED CONCEPTUAL MODEL

Based on findings from the Preliminary Risk Assessment and on findings above from the ground investigation and subsequent collection of soil samples, groundwater samples, surface waters and ground gas data, a revised conceptual site model is presented below.

Source	Pathway	Receptor	Risk Category / Rating
On site:	Ingestion /	End site users	LOW
Construction	Direct		Limited Made Ground on site. There were no
waste material	Contact	Construction	exceedances of the SGVs for Public Open Space (Park).
in the north of		Workers	Should end site users come into contact with underlying
the site.			soils, the soils would not pose a risk to them.
		Maintenance	
Gravel pitch		Workers	
likely to contain			
Made Ground			
	Leaching,	Groundwater	LOW
Land	lateral and	Bedrock	Limited minor DWS exceedances of naturally occurring
disturbance and	vertical		elevated metals detected in the groundwaters.
Cut-fill	migration		
construction			
activities may	Leaching,	Watercourses	LOW TO MODERATE
have introduced	lateral and	and Surface	Limited minor EQS exceedances of naturally occurring
soil	vertical	Water	elevated metals detected in the groundwaters.
contaminants.	migration		
			The construction phase of the development has the
			potential to adversely impact on local surface waters.
			However, both a Construction and Environmental Plan
			and a Piling Risk Assessment are recommended. These
			would include measures to ensure the protection of the
			surface waters.
Ground gas /	Gas ingress	End site users	LOW
vapours	into buildings		The site is classified as CS1 Very Low Risk. There were no
generated from	and site		detections of Carbon Dioxide and limited detections of
Made Ground	infrastructure		Methane. No ground gas protection measures would be
and Alluvium in	Migration		required.
the north and	into services,		
southeast of the	inhalation of	Site Workers	LOW
site	ground gas	Maintenance	Exposure times should be dealt with in safe systems of
	by workers	workers	works, such as for entering of excavations and confined
			spaces.
Radon	Gas ingress	End Site Users	LOW
	into buildings		The site is in an area where between 1 and 5% of the
	and site		homes in this 10km ² grid square are estimated to be
	infrastructure		above the Reference Level of 200 becquerels per
			cubic metre (Ba/m3).

5.0 SUMMARY AND RECOMMENDATIONS

5.1 Summary

The Generic Quantitative Risk Assessment (GQRA) was informed by an intrusive investigation consisting of 25no.boreholes, the collection of 29no. soil samples, 10no. groundwater samples, 6no. surface water samples and collection of ground gas data from 25no. locations across four monitoring rounds.

The data collected during the investigation indicates that there was limited Made Ground across the site. The Made Ground was generally underlain by natural gravelly Clay.

There were no exceedances detected in the underlying soils. There are no environmentally significant concerns in relation to groundwaters and surface waters. Regarding ground gas, the site is classified as CS1 Very Low Risk and therefore, no ground gas protection measures are required.

Overall, the site is deemed **Suitable for Use** and no further investigation is required.

5.2 Other Recommendations

Piling will be required at the bridge in the east of the site. A Piling Risk Assessment should be produced to assess any contamination risks posed by piling into water bearing deposits hydraulically linked to the Cavan River.

An Outline Construction Environmental Management Plan and Environmental Monitoring Plan have been completed to detail how the risks to surface waters and groundwaters will be managed during the construction phase.

Report prepared by:

Reviewed by:

Thomas Martin BSc MSc AMIEnvSc Land Quality Consultant David McLorinan BSc MSc FGS CGeol Senior Consultant Chartered Geologist Chartered Waste Manager

APPENDIX A: Development Plan

	orts Building	
	orts Arena	
	nthetic Hockey Pitch on-water based) hletics Track (400m)	
Exter	rnal Svnthetic Multi-Sport Pitch	
Sand	i Mattress GAA Fields	
Cove	red Stands (3No.)	
S	t Block	
9 Crick	tet Practice Nets	
	SITE BOUNDARY	
	NATURAL TURF PITCH SURFACE	
	SYNTHETIC GRASS PITCH SURAFCE	7267
	ATHLETICS TRACK - EPDM POLYMERIC RUBBER SURFACE	
\odot	GRASS SURFACE / SOFT LANDSCAPED AREAS (Refer to Landscape Architects Drawings ref: XXX)	
	EXISTING NATURAL LANDSCAPE AND HABITAT MAINTAINED	
	WILDUFE HABITAT CREATION ZONE (Refer to Landscape Architects Drawings ref: XXXX)	
	PEDESTRIAN PAVEMENT - ASPHALT / BITMAC	
	PEDESTRAN PAVEMENT - NATURAL GRANITE AGGREGATE CONCRETE PAVING SLABS	
	VEHICULAR PAVEMENT - ACCESS ROAD / PARKING	Proprior
	EXISTING DBNSE HEDGEROW VEGETATION	
	EXISTINGTREE	Sime
	PROPRIETARY CONCRETE BLOCK GEOSYNTHETHIC REINFORCED SEGMENTAL RETAINING WALL SYSTEM Ladeler Devialty on Duar VXXXX	
	(refer defail X on Dwg XXXXX) TIMBER CRIBB RETAINING WALL STRUCTURE (Refer Detail X on Dwg XXXXX)	Properties and the second seco
	(100 M HIGH BALL CATCH NET 12 M HIGH BALL CATCH NET	
	(Tector Bettari A on Bays Xoxao) 1.2M HIGH OPEN MESH FENCING (Refer Danial X on Dwar XXXXX)	
	3.0M HIGH OPEN MESH FENCING	
	(Refer Detail X on Dwg XXXXX) 4.2M HIGH OPEN MESH FENCING	
	42M HIGH OFEN MESH FENLING (Refer Detail X on Dwg XXXXX)	
	1.1M HIGH GALVANISED STEEL SAFETY RAILINGS (Refer Detail X on Dwg XXXXX)	
	1.2M HIGH TIMBER POST & RAIL FENCE (Refer Detail X on Dwg XXXXX)	
/	2M HIGH TIMBER ACOUSTIC FENCE (Refer Detail X on Dwg XXXXX)	
	600MM HIGH TIMBER KNEE RAIL FENCE (Refer Detail X on Dwg XXXXX)	
	PROPOSED ACCESSIBLE SHARED PEDESTRIAN AND CYCLE ROUTE LINKING DUBLIN ROAD AND KILNAVARRAGH LANE - Max Gradient < 1.21	
¢	PROPOSED LOCATION OF FLOODLIGHT COLUMN (Refer Detail X on Dwg XXXXX)	
8	PROPOSED BOLLARD PATHWAY LIGHT	
0	PROPOSED LIGHTING COLUMN - SINGLE LUMINAIRE	
	PROPOSED LIGHTING COLUMN - DOUBLE LUMINAIRE	
:00	ELECTRIC VEHICLE (EV) CHARGE POINT	
8	PROPOSED DUCTING PROVIDED FOR FUTURE EV CHARGING POINT	Properties of the second
•	PROPOSEDF FIXED BOLLARD - STAINLESS STEEL WITH VISIBULT BAND, FERER TO LARD - STAINLESS STEEL WITH 41FET CSCC, MI A.XX,ADDEL - 2001	
•	PROPOSED REMOVABLE BOLLARD - STAINLESS STEEL WITH VISIBILITY BAND, REFER TO LANDSCAPE MATERIALITY SHEET CSC-MLA-XX-00-DR-L-3001	
	PROPOSED LITTER BIN. REFER TO LANDSCAPE MATERIAUTY SHEET CSCAILA-XX-00-DR-L-3001	1
	PROPOSED EV CHARGING PARKING SPACE	
	P ROPOSED ACCESSIBLE PARKING SPACE	
- 75.45	אאאאטרנדה ו נוענו פ	
+	PROPOSED LEVELS	

APPENDIX B: Investigative Locations

APPENDIX C: Surface Water Sampling Locations

APPENDIX D: Borehole Logs

- North Geote	west ech				Site Cavan Regional Sports Centre	Borehole Number BH01			
Machine : Dando 2000 Method : Cable Percussion		Casing Diameter			Ground Level (mOD)		Client Cavan County Council	Job Number 23-0092	
		Location			Dates 30/11/2023		Engineer Mc Adam Design	Sheet 1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend S	
0.50-1.00 1.20-1.65 1.50-2.00 2.00-2.45 2.50-3.00 3.00-3.45 3.40-4.00 4.00-4.15	B SPT N=7 B SPT N=9 B SPT N=32 B SPT 50/0			3,2/2,1,2,2 2,2/2,3,2,2 7,10/10,7,8,7 20,25/50			TOPSOIL Firm brown slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Very stiff brown slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Complete at 4.20m		
Remarks Terminated o	on possible bedrock/	boulder					Scale (approx) 1:50 Figure I 23-00	Logged By No. D92.BH01	

Anorthwest Geotech							Site Cavan Regional Sports Centre		Borehole Number BH02		
Machine : Dando 2000 Casing Diameter Method : Cable Percussion Casing Diameter		r	Ground Level (mOD)		Client Cavan County Council		Job Number 23-0092				
		Location			Dates 30/11/2023		Engineer Mc Adam Design	lesign		Sheet 1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level Depth (mOD) (m) (Thickness)		Description	ition		Water	
0.50-1.00	В						Firm grey slightly sandy gravelly silty CLAY. Sand coarse. Gravel is subangular to subrounded fine t	is fine to o coarse.	X • • • • • • • • • • • • • • • • • • •		
1.20-1.65	SPT N=13			3,2/2,3,4,4		E			× • • ×		
1.50-2.00	В					(3.00)			×		
2.00-2.45 2.50-3.00	SPT N=12 B			6,5/4,3,2,3					× · · · · · · · · · · · · · · · · · · ·		
						3.00			×		
3.00-3.45	SPT N=36			7,7/10,6,11,9			Very stiff grey slightly sandy gravelly silty CLAY. S to coarse. Gravel is subangular to subrounded fin	and is fine e to	× <u> </u>		
3.50-4.00	В						coarse.		× • • • • • • • • • • • • • • • • • • •		
4.00-4.45	SPT N=16			2,3/3,3,6,4					×		
4.50-5.00	В					(2.60)			× • • • • × • • • × • • • • • • • • • •		
5.00-5.45	SPT N=49			7,6/9,12,13,15					× • • • ×		
5.60-5.65	SPT 25*/30 50/20			25/50			Complete at 5.60m		X *		
Remarks Terminated of	on possible bedrock/	boulder						Scale (approx)	Logged By	t	
								1:50			
								Figure N	lo.		
								23-009	92.BH02		

						Site			ole	
Geote	west ech				Cavan Regional Sports Centre		BH03			
Machine : Dando 2000 Casing Diameter			Ground Level (mOD)		Client		Job	~~		
Method : Cable Percussion							Cavan County Council		23-0092	
		Location			Dates		Engineer		Sheet	
					30	0/11/2023	Mc Adam Design		1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)) Depth (m) (Thickness)	Description		Legend	Water
						(0.20)	TOPSOIL	_		
0.50-1.00	В						Stiff becoming very stiff greyish brown slightly san gravelly silty CLAY. Sand is fine to coarse. Gravel subangular to subrounded fine to coarse.	dy is	× • • • • • • • • • • • • • • • • • • •	
1.20-1.65	SPT N=29			5.8/4.4.7.14					× · · · · · · ·	
1.50-2.00	В					=			×	
									× ····	
2.00-2.45	SPT N=17			4,4/5,4,4,4					× · · · · · · ·	
2.50-3.00	В								×	
3.00-3.45	SPT N=22			5,5/5,6,6,5		(5.40)			××	
3.50-4.00	В								× · · · · · · · · · · · · · · · · · · ·	
4.00-4.45	SPT N=25			6,5/6,5,7,7					× • • • • • • • • • • • • • • • • • • •	
4.50-5.00	В								× • • • ×	
5.00-5.45	SPT N=43			10,8/9,11,13,10					× · · · · · · · · · · · · · · · · · · ·	
5.60-5.77	SPT 50/20			21,24/25,25		5.60	Complete at 5.60m		× • • • • • • • • • • • • • • • • • • •	
Remarks									• • •	
Terminated o	on possible bedrock/	boulder						Scale (approx)	Logge By	d
								1:50		
								23-00	92.BH03	

Conthwest Geotech							Site Cavan Regional Sports Centre		Borehole Number BH04	
Machine : Dando 2000 Casing Diameter Method : Cable Percussion Image: Cable Percussion		Ground Level (mOD)		Client Cavan County Council			Job Number			
									23-0092	
		Location			Dates 30/11/2023		Engineer Mc Adam Design			
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	Water
0.50-1.00	В						Firm grey slightly sandy gravelly silty CLAY. Sand coarse. Gravel is subangular to subrounded fine t	is fine to o coarse.		
1.20-1.65	SPT N=12			2,3/3,4,3,2		E			× • • • ×	
1.50-2.00	В					(3.00)			×	ļ
2.00-2.45 2.50-3.00	SPT N=10 B			10,9/3,3,2,2						
									× · · · · · · · · · · · · · · · · · · ·	1
3.00-3.45	SPT N=38			10,9/7,10,11,10		3.00	Stiff to very stiff grey slightly sandy gravelly silty C	LAY. Sand	× • • ×	
							is fine to coarse. Gravel is subangular to subroun coarse.	ded fine to	×	
3.50-4.00	В					= =			×	
						E			×	
4 00 4 45	SDT N-10			1 2/4 5 4 6					× <u> </u>	1
4.00-4.45	3FT N-19			4,3/4,3,4,0		E -			× •••••	1
						(2.80)			×	
4.50-5.00	В					Ē			× •	
5.00-5.45	SPT N=41			3,5/5,10,11,15		-			×	
						E			×	
5.50-5.80	В					E E			× <u>• • • •</u> • ×	
5 80-5 89	SPT 25*/40			25/50		5.80			×	l
0.00-0.00	50/50			20/00			Complete at 5.80m			
						-				
						Ē				
						Ē				
						E				
						<u>-</u>				
						E				
						Ē				
						<u>-</u>				
						-				
						E				
						E-				
						-				
						<u> </u>				
						E				
Remarks Terminated o	n possible bedrock/l	boulder				<u> </u>	1	Scale (approx)	Logge By	d
								1:50		
								Figure N 23-00	lo. 92.BH04	
North Geote	west 2ch					Site Cavan Regional Sports Centre			ole er)7	
-------------------------	----------------------	------------------------	-----------------------	---	----------------	--------------------------------------	--	-------------------------	---	------------
Machine : Da	ando 2000	Casing	Diameter	r	Ground	Level (mOD)	Client		Job	
Method : Ca	able Percussion						Cavan County Council		23-009	er 92
		Locatio	n		Dates	1/10/2022	Engineer		Sheet	
					04	12/2023	Mc Adam Design		1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	Water
0.50-1.00	В						Firm greyish brown slightly sandy slightly gravelly Sand is fine to coarse. Gravel is subangular to sub fine to coarse.	silty CLAY. prounded	X · · · · · · · · · · · · · · · · · · ·	•
1.20-1.65	SPT N=10			1,2/2,3,3,2					× ×	▼ 1
1.50-2.00	В			- , - , - , - , - , -		E-			×	
2.00-2.45 2.50-3.00	SPT N=13 B			Water strike(1) at 2.00m, rose to 1.30m in 20 mins. 2,2/3,3,4,3		(4.00)				. ⊠1
3.00-3.45	SPT N=13			3,4/3,3,4,3					×	
3.50-4.00	В								× · · · · · · · · · · · · · · · · · · ·	•
4.00-4.45	SPT N=20			4,5/4,6,5,5		4.00	Stiff becoming very stiff greyish brown slightly san- gravelly silty CLAY. Sand is fine to coarse. Gravel subangular to subrounded fine to coarse.	dy slightly is	× · · · · · · · · · · · · · · · · · · ·	-
4.50-5.00	В								^. <u></u>	
5.00-5.45	SPT N=40			8,9/11,9,10,10		(1.80)			× · · · · · · · · · · · · · · · · · · ·	•
5.50-5.80	В					 			×	
5.80-5.80	SPT 25*/0 50/0			25/50		5.80	Complete at 5.80m		×.,	
Remarks Terminated o	n possible bedrock/l	boulder						Scale	Logge	ed.
Terminated o	n possible bedrock/l	boulder						(approx)	By	~
								1:50		
								Figure N 23-00	lo. 92.BH07	

							Site		Boreh	ole
Geote	west ech						Cavan Regional Sports Centre		BH0	8
Machine : Da	ando 2000	Casing	Diamete	r	Ground	Level (mOD)	Client		Job	or
Method : Ca	able Percussion						Cavan County Council		23-009	92
		Locatio	n		Dates		Engineer		Sheet	
					01	1/12/2023	Mc Adam Design		1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	1	Legend	Water
						(0.20)	TOPSOIL	k		
0.50-1.00	В						Firm greyish brown slightly sandy gravelly silty CLAY. S is fine to coarse. Gravel is subangular to subrounded fir coarse.	Sand ine to	× · · · · · · · · · · · · · · · · · · ·	
1 20-1 65	SPT N=9			32/3222		-		ŀ	<u> </u>	
1.50-2.00	B			0,210,2,2,2		<u> </u>			×	▼ 1
2.00-2.45 2.50-3.00	SPT N=13 B			Water strike(1) at 2.00m, rose to 1.50m in 20 mins. 2,3/3,2,4,4				p p p p p p p p p p p p p p p p p p p	× · · · · · · · · · · · · · · · · · · ·	.∇1
3.00-3.45	SPT N=8			2,2/2,2,2,2					× · · · · · · · · · · · · · · · · · · ·	
3 50-4 00	в							- - -	× · · · · · · · · · · · · · · · · · · ·	
0.00-4.00								-	<u>×</u>	
4.00-4.45	SPT N=20			2,3/4,5,4,7		4.00	Stiff becoming very stiff greyish brown slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.		× · · · · · ·	
4.50-5.00	В								× • • • ×	
5.00-5.45	SPT N=42			10,8/10,10,11,11		(2.20)		• • •	×	
5.50-6.00	В							- - -	× · · · · · · · · · · · · · · · · · · ·	
6.00-6.21	SPT 75/60			14,17/25,50		6.20	Complete at 6.20m		× • • • •	
Romarks										
Remarks Terminated o	on possible bedrock/l	boulder					Se (ap)	icale prox)	Logge By	d
							1	1:50		
							Fig	igure No	0.	
								∠3-009	2.000	

North Geote	west 2ch					Site Cavan Regional Sports Centre		Borehole Number BH09		
Machine : Da	ando 2000	Casing	Diamete	r	Ground	Level (mOD)	Client		Job	
Method : Ca	able Percussion						Cavan County Council		23-009	e r 2
		Locatio	n		Dates		Engineer		Sheet	
					04	/12/2023	Mc Adam Design		1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	Water
0.50-1.00	В					(2.40)	Soft to firm brown slightly sandy gravelly silty CLAN fine to coarse. Gravel is subangular to subrounded coarse.	′. Sand is I fine to		
1.20-1.65	SPT N=6			4,2/2,1,1,2					× ×	
1.50-2.00	В								× · · · · · · · · · · · · · · · · · · ·	
2.00-2.35 2.00-2.40	SPT 50/200 B			4,4/6,5,25,14					× · · · · · · · · · · · · · · · · · · ·	
						2.40	Complete at 2.40m		×.•.**	
						-				
						<u>-</u>				
						E				
						E				
						E.				
						E				
						E				
						E E				
						E				
						E- E-				
						<u>-</u> -				
						E_				
Remarks	n possible bedrock/k	oulder						Scale	Logged	ł
								(~~~)	_,	
								1:50	<u> </u>	
								23-00	92.BH09	

North	west ech					Site Cavan Regional Sports Centre		Borehole Number BH10			
Machine : D Method : C	ando 2000 able Percussion	Casing	Diamete	r	Ground	Level	(mOD)	Client Cavan County Council		Job Numbe 23-009	er 92
		Locatio	n		Dates	4/12/20	23	Engineer Mc Adam Design		Sheet 1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	De ((Thic	epth m) kness)	Description		Legend	Water
0.50-1.00	в							Firm brown slightly sandy gravelly silty CLAY. Sand coarse. Gravel is subangular to subrounded fine to	is fine to coarse.	X • • • × • • • • • • • • • • • • • • •	
1.20-1.65	SPT N=6			1,1/2,2,1,1		Ē				×. <u></u> ×	
1.50-2.00	В					Ē	(3.00)			× · · · · ·	
2.00-2.45	SPT N=9 B			2,4/2,2,3,2						× · · · · · · · · · · · · · · · · · · ·	
										× ·····	
3.00-3.45	SPT N=23			5,6/6,6,5,6			3.00	Stiff becoming very stiff brown slightly sandy gravell	y silty	× • ×	
						Ē		subrounded fine to coarse.	.0	×	
3.50-4.00	В									×	
							(1.80)			×	
4.00-4.45	SPT N=42			8,9/9,11,11,11						×	
						Ē				×.	
4.80-4.80	SPT 25*/0 50/0			25/50			4.80	Complete at 4.80m		×.	
Remarks Terminated of	n possible bedrock/l	boulder				È.			Scale (approx)	Logge By	d
									1:50		
								-	Figure N	o .	
									23-009	92.BH10	

north Geote	west ech					Site Cavan Regional Sports Centre	Boreho Number BH12		
Machine : D Method : C	andio 2000 able Percussion	Casing	Diamete	r	Ground	Level (mOD)	Client Cavan County Council	Job Numb 23-00)9 2
		Locatio	n		Dates 04	4/12/2023	Engineer Mc Adam Design	Sheet	: 1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water
0.50	B B SPT 50/470			4,4/17,24,9			TOPSOIL Soft brown slightly sandy slightly gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Complete at 1.50m		
Remarks Terminated c	I on possible bedrock/I	poulder	<u> </u>	1	1	<u> </u>	Scale (approx) 1:50 Figure N 23-00	Logg By lo. 92.BH12	⊥ ∍d

North	west 2ch					Site Cavan Regional Sports Centre	Borehole Number BH13		
Machina : Dr	ando 2000	0	D ¹						
Method : Ca	able Percussion	Casing	Diametei	r	Ground	Level (mOD	Cavan County Council	Job Number 23-0092	
		Locatio	n		Dates 28	8/11/2023	Engineer Mc Adam Design	Sheet 1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness	Description	Legend S	
						(0.50)	MADE GROUND: Bluish grey sandy silty angular fine to coarse GRAVEL with fragments of red brick. Sand is fine to coarse.	,	
0.50-1.00	В					0.50	MADE GROUND: Firm to stiff bluish grey slightly sandy gravelly silty CLAY with fragments of red brick and timber. Sand is fine to coarse. Gravel is angular to subangular fine to coarse.		
1.20-1.65	SPT N=11			1,2/1,4,3,3					
1.50-2.00	В					E E			
2.00-2.45	SPT N=19			6,5/5,5,5,4					
2.50-3.00	В								
3.00-3.45	SPT N=21			2,2/4,4,3,10					
3.50-4.00	В								
4.00-4.45	SPT N=17			2,3/3,4,5,5					
4.50-5.00	В								
5.00-5.45	SPT N=18			3,3/4,4,4,6		(9.10)			
5.50-6.00	В								
6.00-6.45	SPT N=25			5,5/7,6,6,6					
6.50-7.00	В								
7.00-7.45	SPT N=8			1,1/1,1,4,2					
7.50-8.00	В								
8.00-8.45	SPT N=16			7,6/5,4,3,4					
8.50-9.00	В								
9.00-9.44	SPT 48/290			5,8/16,14,18					
9.60-9.60	SPT 25*/0 50/0			25/50		9.60	Complete at 9.60m		
Remarks Terminated o	n possible bedrock/	boulder		1	1		Scale (appro	÷ Logged x) By	
							1:50		
						Figur 23	u re No. 3-0092.BH13		
							23	0032.0113	

North	west ech					Site Cavan Regional Sports Centre		Boreho Numbo BH1	ole er 4	
Machine : D	ando 2000	Casing	Diamete	r	Ground	Level (mOD)	Client		Job	
Method : C	able Percussion						Cavan County Council		Number 23-009	er 92
		Locatio	n		Dates	7/12/2023	Engineer		Sheet	
	1			1		1	Mc Adam Design		1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	Water
						(0.20)	TOPSOIL			
0.50-1.00	В		3,3/4,5,9,6				Firm greyish brown slightly sandy slightly gravelly silty CL Sand is fine to coarse. Gravel is subangular to subrounde fine to coarse.	LAY.	× · · · · · · · · · · · · · · · · · · ·	
1.20-1.65	SPT N=24			3,3/4,5,9,6		1.20	Stiff grey slightly sandy gravelly silty CLAY. Sand is fine to	0	× • • • ×	
1.50-2.00	В					 			×	
2.00-2.25	SPT 50/100			4,6/12,19,19		(1.20)		•	× · · · · · · · · · · · · · · · · · · ·	
						2.40			× •	
Remarks							Scale	ale	Logge	ed
Remarks Terminated of Chiselling fro	on possible bedrock/l om 2.40m to 2.40m fo	boulder or 1 hour.					Sca (appr	ale rox)	Logge By	d
							1:50	50		
							Figu 23	ure No 23-009	o. 02.BH14	

- North Geote	west ech					Site Cavan Regional Sports Centre	Borehole Number BH15	
Machine : D Method : C	ando 2000 able Percussion	Casing	Diamete	r	Ground	Level (mOD)	Client Cavan County Council	Job Number 23-0092
		Locatio	n		Dates 07	7/12/2023	Engineer Mc Adam Design	Sheet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend S
0.50-1.00 1.20-1.65 1.50-2.00 2.00-2.45 2.50-3.00 3.00-3.00	B SPT N=16 B SPT N=14 B SPT 25*/0 50/0			3,4/4,4,3,5 4,3/4,3,3,4 25/50			TOPSOIL Firm brownish grey slightly sandy slightl gravelly slitly CLAY. Sand is fine to coarse. Firm to stiff grey slightly sandy gravelly slitly CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Very dense grey slightly slitly subangular to subrounded fine to coarse GRAVEL. Complete at 3.00m	
Remarks Terminated c Chiselling fro	on possible bedrock/ om 3.00m to 3.00m f	boulder or 1 hour.					Scale (approx) 1:50 Figure N 23.00	Logged By lo. 92.BH15

- North Geote	west ech					Site Cavan Regional Sports Centre	Borehole Number BH16	
Machine : D Method : C	ando 2000 able Percussion	Casing	Diamete	r	Ground	Level (mOD)	Client Cavan County Council	Job Number 23-0092
		Locatio	n		Dates 04	4/12/2023	Engineer Mc Adam Design	Sheet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Kater Kater
0.50-1.00 1.20-1.65 1.50-2.00 2.00-2.45 2.50-3.00 3.00-3.45 3.50-4.00 4.00-4.45 4.50-5.00 5.00-5.41	B SPT N=14 B SPT N=20 B SPT N=26 B SPT N=36 B SPT 50/260			2,2/3,5,3,3 4,5/5,5,5,5 5,5/8,6,7,5 8,9/9,9,9,9 11,12/13,14,14,9			TOPSOIL Firm greyish brown slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Stiff becoming very stiff greyish brown slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Subangular to subrounded fine to coarse. Complete at 5.40m	
Perceite								
Remarks Terminated o	on possible bedrock/	boulder					Scale (approx) 1:50	Logged By
							Figure 23-00	⊥ No.)92.BH16

north Geote	west ech					Site Cavan Regional Sports Centre		Borehole Number BH17		
Machine : D Method : C	ando Terrier able Percussion	Casing	Diamete	r	Ground	Level (mOD)	Client Cavan County Council		Job Number 23-0092	r 2
		Locatio	n		Dates 04	1/12/2023	Engineer Mc Adam Design		Sheet 1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	Water
0.50 1.00-1.50 1.20-1.65 2.00-2.43 2.00-2.50 2.90-2.90	B B SPT N=21 SPT 48/280 B SPT 25*/0 50/0			4,4/3,4,6,8 4,3/4,3,16,25 25/50			TOPSOIL Soft brown slightly sandy slightly gravelly silty CLAN fine to coarse. Gravel is subangular to subrounded coarse. Stiff becoming very stiff grey slightly sandy gravelly SILT. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Complete at 2.90m	Cand is fine to		
Remarks	n possible bedrock//	poulder						Scale	Logged	
Remarks Terminated o	on possible bedrock/	boulder						Scale (approx)	Logged By	
							-	Figure N	 o .	
								23-009	92.BH17	

Doctor	uest					Site Cavan Regional Sports Centre		Borehole Number	
Geote	2ch						Cavan Regional Sports Centre		BH18
Machine : Da	ando 2000 able Percussion	Casing	Diamete	r	Ground	Level (mOD)	Client Cavan County Council		Job Number 23-0092
		Locatio	n		Dates 28	8/11/2023	Engineer Mc Adam Design		Sheet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Kater Vater
						(0.50)	MADE GROUND: Grey silty sandy angular fine to GRAVEL. Sand is fine to coarse.	coarse	
1.00	в						MADE GROUND: Firm to stiff bluish grey slightly s gravelly silty CLAY with fragments of red brick and Sand is fine to coarse. Gravel is subangular fine to	andy timber. o coarse.	
1.20-1.65	SPT N=21			1,2/4,6,5,6					
2.00-23.45 2.00	SPT N=11 B			1,1/2,3,3,3					
3.00-3.45 3.00	SPT N=5 B			1,2/2,1,1,1		3.00	MADE GROUND: Soft bluish grey slightly sandy g silty CLAY with fragments of red brick and timber. fine to coarse. Gravel is subangular fine to coarse	ravelly Sand is	
4.00-4.45 4.00	SPT N=5 B			2,2/1,1,1,2		(2.60)			
5.00-5.45 5.00	SPT N=7 B			3,2/2,2,1,2				0li-	
6.00-6.45 6.00	SPT N=12 B			2,2/1,4,4,3			fine to coarse. Gravel is subangular to subrounded coarse.	d fine to	X
7.00-7.45 7.00	SPT N=12 B			8,4/2,4,3,3		(3.20)			
8.00-8.45 8.00	SPT N=12 B			4,3/3,4,2,3					× · · · · · · · · · · · · · · · · · · ·
8.80-8.80	SPT 25*/0 50/0			25/50		8.80	Complete at 8.80m		
Remarks Terminated o	n possible bedrock/l	boulder				<u> </u>		Scale (approx)	Logged By
								1:50	
								23-009	0. 92.BH18

north Geote	west ech					Site Cavan Regional Sports Centre		Borehole Number BH20			
Machine : D Method : C	ando 2000 able Percussion	Casing	Diamete	r	Ground	Level	(mOD)	Client Cavan County Council		Job Numbe 23-009	er 92
		Locatio	n		Dates 07	7/12/20)23	Engineer Mc Adam Design		Sheet 1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	De ((Thic	epth (m) :kness)	Description		Legend	Water
0.50-1.00	В						(0.20) 0.20 (0.60) 0.80	TOPSOIL Firm brownish grey slightly sandy slightly gravelly silty CL Sand is fine to coarse. Gravel is subangular to subrounde fine to coarse. Firm becoming stiff grey slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounde	.AY. ∋d	× • • • • • • • • • • • • • • • • • • •	
1.20-1.65	SPT N=11 B			1,2/1,4,3,3			(2.10)	fine to coarse.			
2.00-2.45	B			2,4/2,3,5,5					-	× · · · · · · · · · · · · · · · · · · ·	
2.90-2.90	SPT 25*/0 50/0	boulder		25/50			2.90	Complete at 2.90m	ale		d
Remarks Terminated o Chiselling fro	on possible bedrock/l om 2.90m to 2.90m fo	boulder or 1 hour.						Sca (appro 1:50	ile 'ox)	Logge By	d
								Figu 23	Jre No 3-009	o. 2.BH20	

North	west					Site Cavan Regional Sports Centre			hole ber	
										21
Machine : Da	ando 2000 able Percussion	Casing	Diamete	r	Ground	Leve	el (mOD)	Client Cavan County Council	Job Numb 23-00)9 2
		Locatio	n		Dates	7/12/2	2023	Engineer Mc Adam Design	Sheet 1/*	t 1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	C (Thi	Depth (m) ickness)	Description	Legend	D Water
0.50-1.00	В						(0.40) 0.40	MADE GROUND: Gery angular fine to coarse GRAVEL. MADE GROUND: Firm becoming stiff slightly sandy gravelly silty CLAY with fragments of red brick. Sand is fine to coarse. Gravel is angular to subangular fine to coarse.		
1.20-1.65 1.50-2.00	SPT N=9 B			2,3/2,2,3,2						
2.00-2.45	SPT N=8			3,2/1,2,2,3						
2.50-3.00	В						(4.80)			
3.00-3.45	SPT N=15			4,3/4,4,3,4						
3.50-4.00	В									
4.00-4.45	SPT N=17			5,5/4,4,5,4						
4.50-5.00	В									
5.00-5.20	SPT 50/50			1,1/50 Water strike(1) at 5.10m, no rise after 20 mins.			5.20	Grey LIMESTONE		
6.00-6.02	SPT 50*/10 50/10			50/50						
7.00-7.02	SPT 50*/10 50/10			50/50			(4.80)			
8.00-8.02	SPT 50*/10 50/10			50/50			(1.00)			
9.00-9.05	SPT 50*/20 50/30			50/50						
10.00-10.00	50/0 SPT 50*/0			50/50			10.00			
Remarks Terminated o	on possible bedrock/	boulder						Scale (approx)	Logge By	ed
								Figure	No.	
								23-00	092.BH21	1

						Site		Boreho Numbe)le er		
Geote	ech					Cavan Regional Sports Centre		BH22	2		
Machine : Da	ando 2000	Casing	Diamete	r	Ground	Level	(mOD)	Client		Job	
Method : Ca	able Percussion							Cavan County Council		23-009)r 12
		Locatio	n		Dates			Engineer		Sheet	
					12	2/12/20	023	Mc Adam Design		1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	D (Thio	epth (m) ckness)	Description		Legend	Water
							(0.40) 0.40	MADE GROUND: Grey angular fine to coarse GRAV MADE GROUND: Soft grey slightrly sandy gravelly cl SILT with low cobble content and fragments of red br timber. Sand is fine to coarse. Gravel is subangular fi	EL. layey rick and ine to		
1.00 1.20-1.65	B SPT N=13			1,3/4,4,3,2				coarse.			
2.00-2.45 2.00	SPT N=12 B			15,8/4,4,2,2							
3.00-3.45 3.00	SPT N=8 B			2,2/2,2,2,2							
4.00-4.45 4.00	SPT N=10 B			4,6/4,2,2,2			(6.90)	4.00-6.00m: Becoming firm			
5.00-5.11 5.00	SPT B			6,9/11,21,18							
6.00-6.45 6.00	SPT N=27 B			6,0/11,4,7,5							
7.00-7.18 7.00	SPT 50/30 B			1,3/2,25,23			7.30	Complete at 7.30m			
Remarks Cobbles may Terminated o	v make SPT numbers n possible bedrock/l	s higher boulder		<u> </u>	1	<u> </u>		(8	Scale approx)	Logged By	F
									1:50		
									Figure No	о.	
									23-009	иz.вн22	

						Site	Borehole		
Geote	west ech					Cavan Regional Sports Centre	BH23		
Machine : Da	ando 2000	Casing	Diamete	r	Ground	Leve	el (mOD)	Client	Job
Method : Ca	able Percussion							Cavan County Council	Number 23-0092
		Locatio	n		Dates 29	9/11/2	2023	Engineer Mc Adam Design	Sheet
Depth (m)	Sample / Tests	Casing Depth	Water Depth	Field Records	Level (mOD)	[(Th	Depth (m)	Description	Legend State
		(m)	(m)			(11	ickness)		
						Ē	(0.40)	MADE GROUND: Grey angular fine to coarse GRAVEL.	
0.50-1.00	В						0.40	MADE GROUND: Firm becoming stiff grey slightly sandy gravelly silty CLAY with fragments of red brick. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.	
1 20-1 65	SPT N=10			22/2323		Ē			
1.50.2.00	R			2,2/2,0,2,0		E			
1.50-2.00	D					Ē	(2.80)		
2.00-2.45	SPT N=10			2,1/2,2,3,3			(2.00)		
2.50-3.00	В					Ē			
						Ē			
3.00-3.45	SPT N=15			3,4/4,3,4,4		E			
						Ē	3.20	Stiff grey slightly sandy slightly gravelly silty CLAY with low	× • • • • • •
3 50-4 00	в					E		cobble content. Sand is fine to coarse. Gravel is subangula to subrounded fine to coarse.	× ×
5.50-4.00	D					Ē			× <u>0</u> • • × 0
						E			* <u>×</u> *
4.00-4.45	SPT N=17			4,4/4,4,5,4		Ē			× <u>• · · · ×</u> •
						F			× • • •
4.50-5.00	В					E			*** <u>**</u> **
						E	(3.20)		× • • •
5.00-5.45	SPT N=18			4,5/4,5,4,5		E			**************************************
						Ē			× <u>0</u> · · · × 0
5.50-6.00	В					E			* <u>×</u> *
						Ē			×. <u>•</u> × •
6 00-6 38	SPT 23/230			34/4568		-			× · · ·
	01 1 20/200			Water strike(1) at		E			<u>, </u>
				6.30m, no rise		Ē	6.40	Grey LIMESTONE	
				after 20 mins.		Ē			
						Ē			
7.00-7.02	SPT 50*/10 50/10			50/50		Ē			
						Ē			
						E			
						E			
8.00-8.00	SPT 50*/0			50/50		E	(0,00)		
	50/0					Ē	(3.60)		
						E			
						Ē			
9 00-9 06	SPT 50*/20			50/50		Ē			
	50/40					E			
						E			
	50/0					Ē			
10.00-10.00	50/0 SPT 50*/0			50/50		Ē	10.00		
Remarks Terminated a	t scheduled depth	1	1	1	1		10.00	Scale (appro	Logged () By
								1:50	
								Figure	→ ∋ No.
								23-	0092.BH23

North Geote	west ech					Site Cavan Regional Sports Centre		hole ber 24		
Machine : D Method : C	ando 2000 able Percussion	Casing	Diamete	r	Ground	Level	(mOD)	Client Cavan County Council	Job Num 23-0	1 ber 1092
		Locatio	n		Dates 29	9/11/20	23	Engineer Mc Adam Design	Shee 1.	∍t /1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Do (Thic	epth m) kness)	Description	Legen	Vater
0.50-1.00	В						(0.20) 0.20 (1.30)	TOPSOIL Firm becoming stiff brown slightly gravelly sandy CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.		
1.20-1.65	SPT N=14			2,2/3,3,4,4		Ē	1.50		·····	<u>.</u>
1.50-2.00 2.00-2.45 2.50-3.00	B SPT N=25 B			2,3/4,5,6,10				Stiff becoming very stiff brown slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.		, <u>× • • • • • • • • • • •</u> ▼ 1
3.00-3.45 3.50-4.00	SPT N=23 B			Water strike(1) at 3.00m, rose to 2.50m in 20 mins. 2,3/5,5,6,7			(3.90)			∑
4.00-4.45	SPT N=40			9,10/9,12,10,9		Ē			×	
4.50-5.00	В								× · · · · · · · · · · · · · · · · · · ·	× •
							5.40	Complete at 5.40m	x •	>* × . •>
Remarks Terminated c	on possible bedrock/	boulder						Scale (approx	Logç By	 jed
								1:50		
								Figure 23-	9 No. 0092.BH2	24

north Geote	west ech						Site Cavan Regional Sports Centre	Borehole Number BH25
Machine : D Method : C	ando 2000 able Percussion	Casing	Diamete	r	Ground	Level (mOD)	Client Cavan County Council	Job Number 23-0092
		Locatio	n		Dates 29	9/11/2023	Engineer Mc Adam Design	Sheet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend S
0.50-1.00	В					(0.20) (0.20) (0.30) (0.30) (0.50)	TOPSOIL Soft to firm brown slightly sandy slightly gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Soft to firm brownish grey slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.	
1.20-1.65	SPT N=9			2,2/1,3,2,3				× • • • • •
1.50-2.00	В							× · · · ·
2.00-2.45	SPT N=14			1,2/3,2,4,5				× · · · · · · · · · · · · · · · · · · ·
2.50-3.00	В			Water strike(1) at		(4.40)		× · · · · · · · · · · · · · · · · · · ·
3.00-3.45 3.50-4.00	SPT N=5 B			3.00m, no rise after 20 mins. 1,2/1,2,1,1				× • • • • • • • • • • • • • • • • • • •
4.00-4.45	SPT N=12			2,3/2,3,3,4				× · · · · · · · · · · · · · · · · · · ·
4.50-4.90	В					=		×.
4.90-4.91	SPT 25*/10 50/0			25/50		4.90	Complete at 4.90m	× · · · ·
Remarks								
Remarks Terminated of	on possible bedrock/	boulder					Scale (approx)	Logged By
							1:50	
							Figure 23-0	No. 092.BH25

north Geot	nwest tech					Site Cavan Regional Sports Ce	entre	Trial Pit Number TP02
Excavation Trial Pit	Method	Dimensi	ons	Ground	Level (mOD)	Client Cavan County Council		Job Number 23-0092
		Location	I	Dates	1/02/2024	Engineer Mc Adam Design		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	s Level (mOD)	Depth (m) (Thickness)	D	escription	Legend
Plan .						TOPSOIL Grey slightly sandy gravell coarse. Gravel is subangu Grey slightly sandy gravell coarse. Gravel is subangu Grey slightly sandy gravell boulder content. Sand is fi subangular to subrounded Complete at 3.50m Remarks No groundwater encounteree	y silty CLAY. Sand is fine to lar to subrounded fine to co y silty CLAY. Sand is fine to lar to subrounded fine to co y silty CLAY with low cobble ne to coarse. Gravel is fine to coarse.	arse.
						No groundwater encounterer	u	
· ·	· ·	•	· · ·		 			
						Scale (approx) 1:50	Logged By	Figure No. 23-0092.TP02

North	west iech						Site Cavan Regional Sports Ce	entre	Trial Pit Number TP05	t r 5
Excavation Trial Pit	Method	ions	Gr	round Le	evel (mOD)	Client Cavan County Council		Job Number 23-0092	r 2	
		Locatio	n	Da	ates 01/0	2/2024	Engineer Mc Adam Design		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Reco	ords (n	.evel nOD) (Depth (m) Thickness)	D	escription	Legend	Water
			Water strike(1) at	3.30m.		(1.00) (0.50) (0.50) (2.00) 3.50	MADE GROUND: Brown s Sand is fine to coarse. Gra fine to coarse. MADE GROUND: Grey sli with fragments of red brick subangular fine to coarse. Brownish grey slightly sna cobble and boulder conter is subangular to subround Complete at 3.50m	lightly sandy gravelly silty Cl ivel is subangular to subrour ghtly sandy gravelly clayey S . Sand is fine to coarse. Gra dy gravelly silty CLAY with lo t. Sand is fine to coarse. Gra ed fine to coarse.	AY, nded	⊽1
					•		Groundwater from surface ru	un off and water trapped in n	nade ground.	
					•	•				
• • •		•				•				
· · ·	· ·		· ·			•				
		•				s	Scale (approx) 1:50	Logged By	Figure No. 23-0092.TP05	

- North	nwest :ech									Site Cavan Regional Sports Ce	ntre		Trial P Numb TP0	rit er 6
Excavation Trial Pit	Method		Dimensi	ions			Ground	Level (mO	D)	Client Cavan County Council			Job Numb 23-00	er 92
			Locatio	n			Dates 07	1/02/2024		Engineer Mc Adam Design			Sheet 1/1	
Depth (m)	Sample	/ Tests	Water Depth (m)	F	ield Reco	ords	Level (mOD)	Depth (m) (Thicknes	ss)	D	escription		Legend	Water
Plan										TOPSOIL Brownish grey slightly sand cobble content. Sand is fin to subrounded fine to coar Grey slightly sandy gravell boulder content. Sand is fin subangular to subrounded weathered bedrock) Complete at 3.00m	dy gravelly silty CLAY with lo e to coarse. Gravel is subar se.	and		
										No groundwater encountered	d			
		·	-	-										
			•			•		 						
	·						•		s	icale (approx) 1:50	Logged By	Figure	9 No. 1092.TPC)6

north Geot	west ech							Site Cavan Regional Sports Ce	ntre	Trial Pit Number TP07	
Excavation Trial Pit	Method	C	Dimensio	ns		Gro	ound Lev	el (mOD)	Client Cavan County Council		Job Number 23-0092
		L	_ocation			Date	es 01/02/	2024	Engineer Mc Adam Design		Sheet 1/1
Depth (m)	Sample / Te	sts	Water Depth (m)	Fiel	d Records	Le (m0	od OD) (Tł	Depth (m) nickness)	D	escription	Legend
1.00-2.00	В							 (1.00) 1.00 (2.50) 3.50 	Brown silty CLAY. Grey slightly sandy gravell boulder content. Sand is fi subangular to subrounded weathered bedrock) Complete at 3.50m	y silty CLAY with low cobble to coarse. Gravel is fine to coarse. (Possible	x x x x <t< td=""></t<>
	·	•	•	•		·	·	•	Water in pit from surface run	off	
		•		•			·	•			
• • •	·	•					·	•			
· ·	·				· ·	•					
						·		. s	Scale (approx) 1:50	Logged By	Figure No. 23-0092.TP07

north Geot	west ech						Site Cavan Regional Sports Ce	entre		Trial Pi Numbe	it ər 8
Excavation Trial Pit	Method	Dimensi	ons	Grou	ind Le	vel (mOD)	Client Cavan County Council			Job Numbe 23-009	ər ∂2
		Location	I	Date	s 01/02	2/2024	Engineer Mc Adam Design			Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Reco	ords (mO	rel D) (T	Depth (m) hickness)	D	escription		Legend	Water
Plan .			· ·			(0.20) 0.20 0.20 (0.40) 0.60 (1.40) - 2.00 - (1.00) - 3.00 -	TOPSOIL MADE GROUND: Grey sli subangular to subrounded cobble content and metal s Brown slightly sandy slight to coarse. Gravel is suban coarse. Grey slightly sandy gravell boulder content. Sand is fi subangular to subrounded weathered bedrock) Complete at 3.00m	ghty sandy slightly silty fine to coarse GRAVEL with scraps. Sand is fine to coarse dy gravelly silty CLAY. Sand gular to subrounded fine to y silty CLAY with low cobble ne to coarse. Gravel is fine to coarse. (Possible	and		
· · · · ·		•		· ·		•					
						. s	Scale (approx) 1:50	Logged By	Figure	No. 092.TP08	8

North Geot	west iech					Site Cavan Regional Sports Ce	entre	Trial Pit Number TP10
Excavation Trial Pit	Method	Dimensio	ns	Ground	Level (mOD)	Client Cavan County Council		Job Number 23-0092
		Location		Dates	1/02/2024	Engineer Mc Adam Design		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Safe
Plan .					(1.90)	TOPSOIL Brown slightly sandy slight to coarse. Gravel is suban coarse. Grey slightly sandy gravell boulder content. Sand is fi subangular to subrounded weathered bedrock) Complete at 2.50m Complete at 2.50m	ly gravelly silty CLAY. Sand i gular to subrounded fine to y silty CLAY with low cobble ne to coarse. Gravel is fine to coarse. (Possible	and
					<u></u>	Scale (approx) 1:50	Logged By	Figure No. 23-0092.TP10

north Geot	west iech					Site Cavan Regional Sports Ce	entre	Trial Pit Number TP14
Excavation Trial Pit	Method	Dimensior	15	Ground	Level (mOD)	Client Cavan County Council		Job Number 23-0092
		Location		Dates 01	/02/2024	Engineer Mc Adam Design		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Safe
0.50	В				(0.30) 0.30 (0.90) (0.90)	TOPSOIL Brown slightly sandy grave coarse. Gravel is subangu	elly silty CLAY. Sand is fine to lar to subrounded fine to coa	
2.00	в				(1.10)	Brown slightly sandy grave and boulder contnent. San subangular to subrounded	Ily clayey SILT with low cob d is fine to coarse. Gravel is fine to coarse.	ble
2.50	В				2.30 (0.20) 2.50	Grey slightly sandy gravell boulder content. Sand is fi subangular to subrounded	y silty CLAY with low cobble ne to coarse. Gravel is fine to coarse.	and × · · · · · · ·
Plan						Complete at 2.50m		
		•		·		No groundwater encountere	d	
· · · · · ·			· · · ·		· ·			
					<mark>.</mark> s	Scale (approx) 1:50	Logged By	Figure No. 23-0092.TP14

- North Geot	west ech				Site Cavan Regional Sports Centre			
Excavation Trial Pit	Method	Dimensio	ons	Ground	Level (mOD)	Client Cavan County Council		Job Number 23-0092
		Location		Dates 01	/02/2024	Engineer Mc Adam Design		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Safe
0.50	В					TOPSOIL MADE GROUND: Brown s CLAY with fragments of pla fine to coarse. Gravel is su coarse	lightly sandy slightly gravelly astic and broken crockery. Sa bangular to subrounded fine	/ and is ***********************************
1.00	В				(1.40)	Brown slightly sandy slight to coarse. Gravel is suban coarse.	ly gravelly silty CLAY. Sand i gular to subrounded fine to	is fine
2.00	В				1.70	Grey slightly sandy slightly cobble and boulder conter is subangular to subround	r gravelly silty CLAY with low it. Sand is fine to coarse. Gra ed fine to coarse.	avel
3.00 Plan	B					Complete at 3.00m		
		•		·	•••	No groundwater encountere	d	
· ·				•	•••			
		·			•••			
· ·	· ·		· · ·		· · ·			
					<u>.</u>	Scale (approx) 1:50	Logged By	Figure No. 23-0092.TP15

north Geot	nwest tech					Site Cavan Regional Sports Ce	Trial Pit Number TP16		
Excavation Trial Pit	Method	Dimension	ns	Ground	Level (mOD)	Client Cavan County Council		Job Number 23-0092	 :
		Location		Dates	1/02/2024	Engineer Mc Adam Design		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend	Water
					(0.30) 0.30	TOPSOIL Brown slightly sandy grave	elly silty CLAY. Sand is fine to		
0.50	В				(0.70)	coarse. Gravel is subangu	lar to subrounded fine to coa	arse.	
1.00	В				(0.70)	Grey slightly sandy gravell coarse. Gravel is subangu	y clayey SILT. Sand is fine to lar to subrounded fine to coa	Arse.	
2.00	В				1.70 1.30)	Grey slightly gravelly claye boulder content. Sand is fi subangular to subrounded	ey SILT with low cobble and ne to coarse. Gravel is fine to coarse.		
3.00	В					Complete at 3.00m			
Plan .				·	'	Remarks No groundwater encountere	d		
					•••				
					•••				
						Scale (approx) 1:50	Logged By	Figure No. 23-0092.TP16	

north Geot	nwest Iech					Site Cavan Regional Sports Ce	Trial Pit Number TP18	
Excavation Trial Pit	Method	Dimensior	IS	Ground	Level (mOD)	Client Cavan County Council		Job Number 23-0092
		Location		Dates	1/02/2024	Engineer Mc Adam Design		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend S
0.50	в				(0.20) 0.20	TOPSOIL Brown slightly sandy slight to coarse. Gravel is suban coarse.	ly gravelly silty CLAY. Sand i gular to subrounded fine to	s fine
1.00	В				1.20	Grey slightly sandy gravell coarse. Gravel is subangu	y silty CLAY. Sand is fine to lar to subrounded fine to coa	NISE.
2.00	В				(1.30)			$\begin{array}{c} \times \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \\ \end{array} \\ \times \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \end{array} \\ \times \begin{array}{c} \bullet \\ \end{array} \\ \times \begin{array}{c} \bullet \\ \bullet $
					(0.50)	Grey slightly sandy gravell coarse. Gravel is subangu	y clayey SILT. Sand is fine to lar to subrounded fine to coa) Irse.
						content. Sand is fine to co subrounded fine to coarse Complete at 3.20m	arse. Gravel is subangular to	
Plan .					'	Remarks No groundwater encountere	d	
		•						
· ·	· ·		· · ·		 			
					 s	Scale (approx) 1:50	Logged By	Figure No. 23-0092.TP18

north Geot	nwest :ech				Site Cavan Regional Sports Centre			
Excavation Trial Pit	Method	Dimensior	15	Ground	Level (mOD)	Client Cavan County Council		Job Number 23-0092
		Location		Dates 01	/02/2024	Engineer Mc Adam Design		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	Legend S	
0.50	В				(0.20) (0.20) (0.70) (0.70)	TOPSOIL Brown slightly sandy slight to coarse. Gravel is suban coarse. Grey slightly sandy gravell content. Sand is fine to co subrounded fine to coarse	ly gravelly silty CLAY. Sand i gular to subrounded fine to y silty CLAY with low cobble arse. Gravel is subangular to	s fine
2.00	В				(1.60) 2.50 (0.50)	Grey slightly sandy slightly cobble content. Sand is fir to subrounded fine to coar	r gravelly silty CLAY with high e to coarse. Gravel is suban se.	1 x
3.00	В					Complete at 3.00m		
Plan .					'	Remarks		
		•		·				
· ·	· ·				· ·			
					<u>.</u> s	Scale (approx) 1:50	Logged By	Figure No. 23-0092.TP21

- North Geot	west ech				Site Cavan Regional Sports Centre				Trial Pit Number TP29			
Excavation Trial Pit	Method	Dimensio	ons	Gi	round l	Level (mOl	D)	Client Cavan County Council			Job Numb 23-00	er 92
		Location		Da	ates 01/	/02/2024		Engineer Mc Adam Design			Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Reco	ords (r	⊥evel mOD)	Depth (m) (Thicknes	s)	D	escription		Legend	Water
1.00-2.00	В)))	TOPSOIL Brown clayey SILT. Brown slightly sandy slight to coarse. Gravel is suban coarse. Brown slightly sandy very s coarse. Gravel is subangu Grey slightly sandy gravell boulder content. Sand is fi subangular to subrounded Complete at 3.50m	ly gravelly silty CLAY. Sand i gular to subrounded fine to gravelly silty CLAY. Sand is f iar to subrounded fine to coar y silty CLAY with low cobble ne to coarse. Gravel is fine to coarse.	is fine ine to arse. and		
							1	No groundwater encountere	d			
							So	cale (approx) 1:50	Logged By	Figure	• No. 092.TP2	29

					Site			Numbe		
Geote	west ech					Cavan Regional Sports Centre		SBH01		01
Machine : Da	ando Terrier	Dimens	ions	Ground	Level (mOD)	Client		J	ob	
Method : D	rive-in Windowless ampler	150	Omm to			Cavan County Council		N 2	Number 23-0092	
		Locatio	n	Dates	2/01/2024	Engineer		Sheet		
					./01/2024	Mc Adam Design			11//11	9
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	str
					(0.20)	TOPSOIL				
					- 0.20	Firm bluish brown slightly sandy slightly gravelly silty CLAY. Sand is fine to coarse. Gravel is	×. · · · · · · ·			
0.50	ES					subangular to subrounded fine to coarse.	× · · · · · · · · · · · · · · · · · · ·			
					(1.20)		×			
1.00	ES						× • • • • ×			300 4200 2000 2000 2000 2000
					1.40	Firm grey slightly sandy gravelly silty CLAY. Sand	× · · · · · · · · · · · · · · · · · · ·			
						subrounded fine to coarse.	×			
2.00	ES						× • • • • ×			
2.00					(1.60)		× • • • • • ×			
					E-		×			
							×. <u>···</u> ×.			
3.00	ES				3.00	Complete at 3.00m	×*		- <u>8</u> 85	1200
					E F-					
					E- -					
					E					
					E- E-					
					E- E-					
					E E					
					E					
					<u>-</u>					
					E					
								L		
Remarks Terminated o	on possible bedrock/b	oulder					Scale (approx)	B	ogge y	∍d
							1:50			
							Figure N	lo.		
							23-009	€2.S	BH0 ⁻	1

	_				Site			or	
Geote	west ech					Cavan Regional Sports Centre		SBH)2
Machine : Da	ando Terrier	Dimens	ions	Ground	Level (mOD)	Client		Job	
Method : Di Sa	rive-in Windowless ampler	15	0mm to			Cavan County Council		23-009	∍r ∂2
		Locatio	n	Dates	2/01/2024	Engineer		Sheet	
						Mc Adam Design		21/119	,
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	Water
					(0.20)	TOPSOIL			
						Firm Bluish brown slightly sandy slightly gravelly si Sand is fine to coarse. Gravel is subangular to sub	Ity CLAY. prounded	×	
0.50	ES				(0.90)	fine to coarse.		× · · · · · · ·	
1.00	ES				1.10	Firm grey slightly sandy gravelly silty CLAY. Sand is	s fine to	ו••••	
						coarse. Gravel is subangular to subrounded fine to	coarse.	× · · · · · · · · · · · · · · · · · · ·	▼ 1
								× · · · · ·	
2.00	ES		Water strike(1) at 2.00m,		(2.10)			×	V 1
								× · · · · · · · · · · · · · · · · · · ·	
								× ····································	
3.00	ES							×	ļ
					5.20	Complete at 3.20m			
Remarks					-		0	1	
Terminated o	n possible bedrock/b	oulder					Scale (approx)	Logge By	u
							1:50	0.	
							23-009	2.SBH02	<u>!</u>

, North Geote	west ech				Site Cavan Regional Sports Centre				er 03	
Machine : D Method : D Sa	ando Terrier rive-in Windowless ampler	Dimens 15	ions 0mm to	Ground	Level (mOD)	Client Cavan County Council		Jo N 2	ob umb 3-009	er 92
		Locatio	n	Dates 22	2/01/2024	Engineer Mc Adam Design		S	heet 31/11	9
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	str
0.50	ES				(0.30)	TOPSOIL Firm bluish brown slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.	×			
1.00	ES				(2.20)					రణింతినిగి దర్శకారి శర్తింతిని రాజు భార్థిత్తాని రాజు శరివాణ రాజు రాజు రాజు రాజు
2.00	ES		Water strike(1) at 2.00m, rose to 1.50m in 20 mins.			Complete at 2.50m		⊻1		
Remarks Terminated o	n possible bedrock/b	oulder	1	1	<u> </u>		Scale (approx)	L/ B	ogge y	d
							1:50 Figure N 23-009	\o . 92.S	BH03	3

					Site			Number		
Geote	west ech				Cavan Regional Sports Centre			SBH04		
Machine : Da	ando Terrier	Dimens	ions	Ground	Level (mOD)	Client		J	ob	
Method : Di Sa	rive-in Windowless ampler	15	0mm to			Cavan County Council		2	umb 3-00	er 92
		Locatio	n	Dates	2/01/2024	Engineer		s	heet	
						Mc Adam Design			41/11	Э
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	str
0.50 1.00 2.00	ES ES		Water strike(1) at 2.00m, rose to 1.90m in 20 mins.			Firm brown slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Firm greyish brown slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.		21		
Demoka										
Remarks Terminated o	n possible bedrock/b	oulder					Scale (approx)	B	ogge y	۶d
							1:50			
							Figure N 23-00	lo. 92.S	BH04	4

					Site			umbe	r	
Geote	west ech				Cavan Regional Sports Centre		SBH05		15	
Machine : Da	ando Terrier	Dimens	ions	Ground	Level (mOD)	Client		Job		
Method : D	rive-in Windowless ampler	150	Omm to			Cavan County Council		N 2	umbe 3-009	r 2
		Locatio	n	Dates	2/01/2024	Engineer		s	heet	
						Mc Adam Design			51/119	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Inst	.r
0.50	ES				(0.80)	MADE GROUND: Firm brown slightly sandy gravelly CLAY with fragments of red brick. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.				
0.00	20				0.80	Firm bluish brown slightly sandy gravelly silty				
1.00	ES				(0.50) 1.30	to subrounded fine to coarse.	×			00 80 900 80 80 90 80 80 80
						Firm grey slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.	× • • • ×			
0.00	50						×. <u>···</u> ×			
2.00	ES				(1.60)		×. <u>··</u> ×			
							× · · · · · · · · · · · · · · · · · · ·			
					2.90	Complete at 2.90m	×. •••••••			1000
					E E					
Remarks Terminated o	n possible bedrock/b	oulder			Ē		Scale (approx)	L	oggec y	t
							1:50			
						-	Figure N 23-009	lo. 92.S	BH05	

					Site				or	
Geote	west ech					Cavan Regional Sports Centre		S	BH	06
Machine : Da	ando Terrier	Dimens	ions	Ground	Level (mOD)	Client		J	ob	
Method : D	rive-in Windowless ampler	15	0mm to			Cavan County Council		2	umb 3-00	er 92
		Locatio	n	Dates	104/0004	Engineer		s	heet	;
				23	8/01/2024	Mc Adam Design			61//1	9
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	str
					(0.20)	TOPSOIL				
0.50	ES					Firm brown slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.	× • • • • • • • • • • • • • • • • • • •	-		
					(1.40)		× · · · ·			
1.00	ES						× • • • • ×	-		
					- 1.60	Firm brownigh grow slightly condy growelly oils	× <u>•</u> ••×			42.00 000 0000 000 0000 0000
2.00	ES		Water strike(1) at 2.00m,		(0.80)	CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.	× · · · · · · · · · · · · · · · · · · ·	⊥ □ 1		42,05 of 05 000 0 0 00 000 0 0 0 00 0 0 0 0 0 0
			rose to 1.70m in 20 mins.		2.40		×	1		
						Complete at 2.40m				
Remarks Terminated o	on possible bedrock/b	oulder		,			Scale (approx)	B	ogge y	ed (
						-	1:50			
							Figure N 23-00	10. 92.S	BH0	6

					Site			umbor		
Geote	west ech				Cavan Regional Sports Centre			BH07		
Machine : Da	ando Terrier	Dimens	ions	Ground	Level (mOD)	Client		Jo	b.	
Method : Dr Sa	rive-in Windowless ampler	15	0mm to			Cavan County Council		23-0092		
		Locatio	n	Dates	2/01/2024	Engineer			neet	
				20	01/2024	Mc Adam Design			71/119	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr	
0.50 1.00 2.00	ES ES		Water strike(1) at 2.00m, rose to 1.20m in 20 mins.			TOPSOIL Firm greyish brown slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Complete at 2.50m		⊻1		
Remarks Terminated o	n possible bedrock/b	ooulder	1	1		1	Scale (approx) 1:50	L(B)	ogged /	
							Figure N	lo.		
							23-009	2.SI	3H07	
Porthwest Geotech						Site Cavan Regional Sports Centre			umbo	or
-------------------------	------------------------------	-----------------------	---------------	----------------	------------------------------	---	---	---------------------	------------	---
Geote	west 2ch				Cavan Regional Sports Centre		S	BHC	")8	
Machine : Da	ando Terrier	Dimensi	ons	Ground	Level (mOD)	Client		Jo N	ob umbe	er
Method : Dr Sa	rive-in Windowless ampler	150	Jmm to			Cavan County Council		2	3-009) 2
		Location	1	Dates 23	/01/2024	Engineer		S	neet	
									81/19	,
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	tr
0.50	ES				(0.30) 0.30	TOPSOIL Firm brown slightly sandy slightly gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.	× · · · · · · · · · · · · · · · · · · ·			
1.00	ES				(2.30)					ප හදි පොළු දේ නි හදි පොළු දේ යන්ත. අප පොලොල අප පොලොල අප හැකි. ඉති පොලොල අප පොලොල අප හැකි.
2.00	ES						× · · · · ·			
					2.60	Complete at 2.60m	· · · · ·			1988 1988 1988
					E E					
					E E					
Remarks Terminated o	n possible bedrock/b	oulder					Scale (approx)	L(B)	ogge y	d
						·	1:50			
							Figure N 23-009	IO. 12.SI	3H08	3

Image: market is up the first is basic part of and is grant dama is provided in the first is provi							Site		N	umb	or
Machene Derestient	Geote	chine : Dando Terrier Dimensions Ground Level (mo					Cavan Regional Sports Centre		S	BH	09
Image: marking starting part (marking start) (m	Machine : Da Method : Da Sa	ando Terrier rive-in Windowless ampler	Dimensi 150	ons)mm to	Ground	Level (mOD)	Client Cavan County Council		J N 2	ob umb 3-009	er 92
Depth (n) Sample / Tests Vergr (n) Field Records Ar80 (n) Depth (n) Description Loge (n) Implement (n) 0.50 ES Field Records (a) 100 100 100 Implement (n) 100 100 Field Records (a) 100 Field Records Field Records Field Records Field Records 100 Field Records			Locatior	1	Dates 23	8/01/2024	Engineer Mc Adam Design		S	heet 91/11	9
0.00 E3 100 E3 200 E3 300 E3 300 E3 300 E3 300 E3 300 E3 300 E3 500 E3 300 E3 500 E3 300 E3 500 E3 60 E3 60 E3	Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	str
100 ES ES ES ES ES Completo at 3.00m ES	0.50	ES				(0.30)	TOPSOIL Firm brown slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.				
2.00 ES 3.00 ES 3.00 Complete at 3.00m III IIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	1.00	ES				(2.70)					era a constant of a constant o
3.00 ES ES 3.00 Complete at 3.00m Image: Signal state st	2.00	ES									
Remarks Terminated on possible bedrock/boulder Scale (approx) Logged By 1:50	3.00	ES					Complete at 3.00m				
1:50 Figure No.	Remarks Terminated o	n possible bedrock/b	ooulder					Scale (approx)	B	ogge y	۶d
								1:50 Figure N	No.		

					Site Cavan Regional Sports Centre				or	
Geote	west 2ch				Cavan Regional Sports Centre		S	BH	10	
Machine : Da Method : Dr Sa	ando Terrier rive-in Windowless ampler	Dimensi 150	ons)mm to	Ground	Level (mOD)	Client Cavan County Council		J N 2	ob umb 3-00	er 92
		Location	1	Dates 23	8/01/2024	Engineer		S	heet	
Depth		Water		Level	Depth			ter		<u> </u>
(m)	Sample / Tests	(m)	Field Records	(mOD)	(m) (Thickness)	Description		Wa	Ins	str
0.50	ES				(0.30) 0.30	TOPSOIL Firm Brown slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.				
1.00	ES				(1.40)		× • • • • • • • • • • • • • • • • • • •			2000 000 000 000 000 000 000 000 000 00
					1.70	Complete at 3.40m	× · · · · · · · · · · · · · · · · · · ·			
2.00	ES									413,15 or 2019 of 2015 of 2015 100,202 of 2015 of 2015 100,202 of 2015 of 2015 of 2015
3.00	ES									
Remarks Terminated o	n possible bedrock/k	oulder					Scale (approx)	L B	ogge y	۶d
							1:50	No.		
							23-00	92.S	BH10	5

north Geote	west ech				Site Cavan Regional Sports Centre		N S	Number SBH11		
Machine : D Method : D Si	ando Terrier rive-in Windowless ampler	Dimensi 150	ons)mm to	Ground	Level (mOD)	Client Cavan County Council		Jo N 2	ob umb 3-00)9 2
		Location	1	Dates 24	1/01/2024	Engineer Mc Adam Design		S	heet 11/1	: 19
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	str
0.50	ES				(0.20) 0.20	TOPSOIL Firm bluish brown slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.				
1.00	ES				(2.60)		x · · · · · · · · · · · · · · · · · · ·			
2.00	ES					Complete at 2.80m	· · · · · · · · · · · · · · · · · · ·			0 - 400 0 0 - 400 0 -
Remarks	n possible bedrock//					Complete at 2.80m	Scale		0000	ed
Terminated of	on possible bedrock/l	ooulde					Scale (approx) 1:50	B	ogge y	€
							Figure N 23-009	⊥ lo. 92.S	BH1	1

Control lingund Sports Coder Coder Regional Sports Coder Coder Coder Regional Sports Coder						Site		N	umbor	
Mechanic Indexist Inform Dimensions Summ by Dremesions Summ by Dremesions Control Laws/ (m00) Clinit Control Control Control Reset Machael Parate Another Reset Reset Machael Reset	Geote	achine · Dando terrier Dimensions Ground Level (Cavan Regional Sports Centre		S	BH12
Internet: Image: mean biase intervised of the control contro control control control control control control control control c	Machine : Da	ando terrier	Dimens	ions	Ground	Level (mOD)	Client		Jı	b
Image: state st	Method : Di	rive-in Windowless ampler	15	0mm to			Cavan County Council		N 2	umber 3-0092
Origination Sample / Test Second Parameter Field Records Arrow Parameter Description Learner Parameter 0.00 E3 Field Records			Locatio	n	Dates 24	4/01/2024	Engineer		S	heet
Op/En Sample / Res Weise Description Legent § net 0.00 ES H <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>Mc Adam Design</td><td></td><td></td><td>12/19</td></td<>							Mc Adam Design			1 2/1 9
0.30 E3 Image: Big (1) = 0.00m, (1)	Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
0.90 ES Mode entities to care down along and yearly in the to care with the to care withe to care with the to care with the to care						0.10	MADE GROUND: Grey angular fine to medium GRAVEL. (Compacted)			
1.00 ES Value strike(1) at 2.00m, no to max (3.00) ES Value strike(1) at 2.00m, no to max (3.00) (3.00) ES Image: Complete at 4.00m Image: Comple	0.50	ES					MADE GROUND: Grey and brown silty sandy angular fine to coarse GRAVEL.	× · · · · · · · · · · · · · · · · · · ·		
2.00 E5 Vader stink(1) al 2.00m, no. 0 mms. (3.60) (3.60) Complete at 4.00m Image: Co	1.00	ES					CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.		▼ 1	
3.00 ES <	2.00	ES		Water strike(1) at 2.00m, rose to 1.10m in 20 mins.		(3.60)			1	7 0.0 1 20 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
4.00 ES <	3.00	ES								
Remarks Terminated on possible bedrock/boulder Scale (approx) Logged By 1:50	4.00	ES					Complete at 4.00m			
1:50 Figure No.	Remarks Terminated o	n possible bedrock/l	boulder		<u> </u>	<u> </u>		Scale (approx)	L(B	ogged y
Figure No.								1:50		
								Figure N	lo .	BU10

						Site		N	umb	or
Geote	west 2ch					Cavan Regional Sports Centre		S	BH	13
Machine : Da	ando Terrier	Dimensi	ons	Ground	Level (mOD)	Client		J	ob	
Method : Da	rive-in Windowless ampler	150)mm to		ζ, γ	Cavan County Council		N 2	umb 3-00	er 92
		Locatio	1	Dates	1/01/2024	Engineer		s	heet	
				27	//////////	Mc Adam Design			1 3/1	9
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	str
0.50 1.00 2.00	ES ES					TOPSOIL MADE GROUND: Firm greyish brown slightly sandy gravelly silty CLAY with fragments of red brick. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Complete at 2.30m				මමාං දේ වැඩි කර පොහැ කිරීම කර කර කර ක
Remarks Terminated c	n possible bedrock/b	poulder					Scale (approx) 1:50 Figure N	L B	ogge	ed
							23-009	92.S	BH1:	3

north Geote	west ech				Site Cavan Regional Sports Centre		N S	Number SBH14		
Machine : D Method : D	ando Terrier rive-in Windowless ampler	Dimensi 150	ons)mm to	Ground	Level (mOD)	Client Cavan County Council		Jo N 2	ob umber 3-0092	
		Locatior	1	Dates 24	/01/2024	Engineer Mc Adam Design		SI	heet 1 4/1 9	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr	
0.50	ES					TOPSOIL Firm bluish brown slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.				
1.00	ES						× • • • • • • • • • • • • • • • • • • •		2000 280	
					(2.30)		× · · · ×			
2.00	ES						× • • • • • • • • • • • • • • • • • • •			6-000 00000 - 000 00 00 00 00 00 00 00 00 00
					2.50	Complete at 2.50m				
Remarks Terminated o	on possible bedrock/b	oulder					Scale (approx)	L	ogged y	_
						F	1:50			_
							Figure N 23-009	1 0.)2.SI	BH14	

Porthwest Geotech						Site Cavan Regional Sports Centre				
Geote	west 2ch				Cavan Regional Sports Centre		S	BH15		
Machine : Da	ando Terrier	Dimens	ions	Ground	Level (mOD)	Client		J	ob	
Method : Di	rive-in Windowless ampler	150	Omm to			Cavan County Council		N 2	umber 3-0092	
		Locatio	n	Dates	1/01/2024	Engineer		S	heet	
				27	10 1/2024	Mc Adam Design			1 5/1 9	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr	
					(0.20)	TOPSOIL				
0.50	ES					Firm Brown slightly snady slightly gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.	× · · · · · · · · · · · · · · · · · · ·			
					E (1.10)		×			
1.00	ES				1.30	Firm group lightly conduction the group ly gifty CLAV	×.° <u>··</u> ·×			
						Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.	× · · · · ·			
							× • • • • ×			
2.00	ES				(1.50)		× · · · · · · · · · · · · · · · · · · ·			
					E E		×			
					2.80	Complete at 2.80m	·····			
					E					
Remarks Terminated o	on possible bedrock/b	oulder					Scale (approx)	B	ogged Y	
						-	1:50			
							Figure N 23-00§	lo. 92.SI	BH15	

North	west				Site Cavan Regional Sports Centre		N	umbe	۶r	
Machine	ando Torrior							3		19
Method : Di	rive-in Windowless ampler	Dimens 15	ions Omm to	Ground	Level (mOD)	Client Cavan County Council		J N 2	ob umbe 3-009	;r)2
		Locatio	n	Dates	5/01/2024	Engineer		s	heet	
						Mc Adam Design			1 6/1 9)
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Inst	tr
					(0.20)	TOPSOIL				
0.50	ES					Firm grey slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.	×. · · · · · · · · · · · · · · · · · · ·			
1.00	ES						× · · · · · · · · · · · · · · · · · · ·			20 0 4 5 2 4 4 5 0 6 4 5 4 5 5 4 5 5 5 6 6 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
2.00	ES				(2.80)			▼ 1		80 44 405 00 45 50 44 46 80 50 40 40 40 40 40 90 50 50 50 50 50 50 50 50
							×	-		04.0570 44406 04470 24562 486002 42550 24582 686002 42550
3.00	ES		Water strike(1) at 3.00m,		3.00	Complete at 3 00m	×	V 1		
			rose to 2.00m in 20 mins.							
					-					
Remarks Terminated o	n possible bedrock/b	oulder	1	I	<u> </u>	1	Scale (approx)	LB	ogged y	b
							1:50			
							Figure N 23-00	10. 92.S	BH19	

						Site		N	umb	or
Geote	Continuest Geotech					Cavan Regional Sports Centre		S	BH	22
Machine : Da	ando Terrier	Dimens	ions	Ground	Level (mOD)	Client		J	b	~~
Method : D Sa	rive-in Windowless ampler	150	Omm to			Cavan County Council		2	3-00	92
		Locatio	n	Dates	:/01/2024	Engineer		s	heet	
				20	01/2024	Mc Adam Design			1 7/1	9
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	str
					(0.20)	TOPSOIL				
0.50	ES					Firm bluish brown slightly sandy slightly gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.	× • • • • • • • • • • • • • • • • • • •	-		
1.00	ES						× · · · · · · · · · · · · · · · · · · ·			43,55 m2, m3, m3, m4, m3, m3, m3, m3, m3, m3, m3, m3, m3, m3
2.00	ES				(3.80)					be 42,0¹⁵ or 5 ,000 effective of 0.020 (10,000) effective
3.00	ES									<u></u>
							× · · · · · · · · · · · · · · · · · · ·	1		
Remarks Terminated o	on possible bedrock/b	oulder					Scale (approx)	L	ogge y	⊧d
							1:50			
							Figure N 23-009	10. 92.S	BH22	2

Desth	weet				Site		N	umber	
Geote	Chine : Dando Terrier Dimensions Ground L					Cavan Regional Sports Centre		S	BH23
Machine : Da Method : Da	ando Terrier rive-in Windowless ampler	Dimension 150	ons Imm to	Ground	Level (mOD)	Client Cavan County Council		Jo N 2	ob umber 3-0092
	·	Location	1	Dates	01/2024	Engineer		S	heet
				20	/01/2024	Mc Adam Design			1 8/1 9
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
0.50	ES				(0.30)	TOPSOIL Firm bluish brown slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.			
1.00	ES				(2.50)				
2.00	ES								
						Complete at 2.80m			
Remarks Terminated o	n possible bedrock/b	poulder					Scale (approx)	Lo	ogged y
							1:50		
							Figure N	lo.	
							23-009	92.SI	BH23

						Site		N	umb	or
Geote	west ech					Cavan Regional Sports Centre		S	BH	24
Machine : Da	ando Terrier	Dimensi	ons	Ground	Level (mOD)	Client		J	b.	
Method : D	rive-in Windowless ampler	150)mm to			Cavan County Council		N	umb 3-00	er 92
		Location	1	Dates		Engineer		S	heet	
				25	/01/2024	Mc Adam Design			1 9/1	9
Depth		Water		l evel	Depth			P		
-(m)	Sample / Tests	Depth (m)	Field Records	(mOD)	(m) (Thickness)	Description	Legend	Wat	Ins	str
						TOPSOIL Firm bluish Brown slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Complete at 2.20m				
Remarks					F		Seele	\square		
Terminated o	n possible bedrock/b	oulder					Scale (approx)	B	ogge y	a
							1:50			
							Figure N	lo.		
							23-009)2.SI	BH24	1

	_					Site		Numb	or
Geote	west ech					Cavan Regional Sports Centre		SBH	")2
Machine : Da	ando Terrier	Dimens	ions	Ground	Level (mOD)	Client		Job	
Method : Di Sa	rive-in Windowless ampler	15	0mm to			Cavan County Council		23-009	∍r }2
		Locatio	n	Dates	2/01/2024	Engineer		Sheet	
			1			Mc Adam Design		1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	Water
					(0.20)	TOPSOIL			
0.50	EQ					Firm Bluish brown slightly sandy slightly gravelly sil Sand is fine to coarse. Gravel is subangular to sub- fine to coarse.	ty CLAY.	× • •	
0.50	ES				(0.90)	line to coarse.		× · · · · · · · · · · · · · · · · · · ·	
1.00	ES				1.10	Firm grey slightly sandy gravelly silty CLAY. Sand is coarse. Gravel is subangular to subrounded fine to	s fine to	× • • • • • • • • • • • • • • • • • • •	
						g		× · · · · · · · · · · · · · · · · · · ·	⊻ 1
								× · · · ·	∇ 1
2.00	ES		Water strike(1) at 2.00m, rose to 1.40m in 20 mins.		(2.10)			× · · · ·	
								×	
								×	
3.00	ES				3.20	Complete at 3.20m		× • • • • • • • • • • • • • • • • • • •	
Remarks Terminated o	n possible bedrock/b	oulder			<u> </u>		Scale (approx)	Logge By	d
							1:50		
						-	Figure N	lo.	
							23-009	2.SBH02	

North	west				Site Cavan Regional Sports Centre		N	umber	
		1						3	БПОЗ
Machine : Da Method : Da Sa	ando Terrier rive-in Windowless ampler	Dimens 15	ions 0mm to	Ground	Level (mOD)	Client Cavan County Council		Jo N 2	ob umber 3-0092
		Locatio	n	Dates 22	2/01/2024	Engineer Mc Adam Design		S	neet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
0.50 1.00 2.00	ES ES		Water strike(1) at 2.00m, rose to 1.50m in 20 mins.		(Thičkňess)	TOPSOIL Firm bluish brown slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Complete at 2.50m		▼ 1 ∇1	
Remarks Terminated o	n possible bedrock/b	oulder					Scale (approx)	L(B	ogged /
							1:50		
							Figure N 23-009	lo. 92.SI	3H03

						Site Cavan Regional Sports Centre			umb	er
Geote	west ech					Cavan Regional Sports Centre		S	BH	04
Machine : Da	ando Terrier	Dimens	ions	Ground	Level (mOD)	Client		J	ob	
Method : Di	rive-in Windowless ampler	15	0mm to			Cavan County Council		2 N	umb 3-00	er 92
	·	Locatio	n	Dates		Engineer		s	heet	
				22	2/01/2024	Mc Adam Design			1/1	I
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	str
					(0.20)	TOPSOIL				
					0.20	Firm brown slightly sandy gravelly silty CLAY. Sand	×	-		
0.50	ES				(1.10)	subrounded fine to coarse.	× · · · · · · · · · · · · · · · · · · ·			
1.00	EQ						× · · ·	-	5.88.9	-86E
1.00	E3				E 1.30	Firm aravish brown slightly sandy gravelly silty	× • • • •			1000 0000
						CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.	×	1		6305 00 6006 00 6006 00
					(1.30)		××	₹1		002.0350 P.050.04
2.00	ES		Water strike(1) at 2.00m, rose to 1.90m in 20 mins		(1.30) 		×			300 4200 500 4200
							×			200 00 000 200 00 000 200 00 000
					2.60	Complete at 2.60m	<u>×°.**•</u> *	1	5.503 -	<u>67300</u>
					-					
					-					
					- -					
					-					
					-					
Remarks Terminated o	n possible bedrock/b	oulder	I	1			Scale (approx)	L	ogge y	⊧d
							1:50			
							Figure N 23-009	10. 92.S	BH04	4

				Site Cavan Regional Sports Centre			N	umbe	er	
Geote	west ech					Cavan Regional Sports Centre		S	BH	05
Machine : Da	ando Terrier	Dimensi	ions	Ground	Level (mOD)	Client		J	ob	
Method : Di	rive-in Windowless ampler	150	Omm to		. ,	Cavan County Council		N 2	umbe 3-009	ər 92
		Locatio	n	Dates	2/01/2024	Engineer		S	heet	
						Mc Adam Design			1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	tr
0.50	ES				(0.80)	MADE GROUND: Firm brown slightly sandy gravelly CLAY with fragments of red brick. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.				
0.00	20				0.80	Firm bluish brown slightly sandy gravelly silty	×. <u></u> ×			
1.00	ES				(0.50) 1.30	to subrounded fine to coarse.	×			
						Firm grey slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.	× · · · · · · · · · · · · · · · · · · ·			80.000 0000 0000 80.000 0000 90.000 0000
2.00	ES				(1.60)		× · · · · · ·			
2.00	20				E (1.00)		× • • • ×			
							× · · · · · · · · · · · · · · · · · · ·			
					2.90	Complete at 2.90m	× • •		िःश्व	8.60
Remarks Terminated o	n possible bedrock/b	oulder			<u>F</u>		Scale (approx)	L	ogge v	d
							1:50		-	
						_	Figure N 23-009	lo. 02.SI	BH05	5

						Site Cavan Regional Sports Centre			umb	er
Geote	ech					Cavan Regional Sports Centre		S	BH	06
Machine : Da	ando Terrier	Dimens	ions	Ground	Level (mOD)	Client		J	ob	or
Method : D Sa	rive-in Windowless ampler	15	0mm to			Cavan County Council		2	3-009	92
		Locatio	n	Dates	2/01/2024	Engineer		s	heet	
				20	01/2024	Mc Adam Design			1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	str
0.50 1.00 2.00	ES ES		Water strike(1) at 2.00m, rose to 1.70m in 20 mins.			TOPSOIL Firm brown slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Gravel is subangular to subrounded fine to coarse. Complete at 2.40m		▼1 ∇1		
Remarks Terminated o	on possible bedrock/b	oulder					Scale (approx)	L B	ogge y	d
							1:50			
							Figure N 23-00	10. 92.S	BH06	3

north Geote	west ech				Site Cavan Regional Sports Centre		N S	umbei BH0	7	
Machine : Da	ando Terrier	Dimens	ions	Ground	Level (mOD)	Client		Jo	ob umbei	r
Method : Di Sa	rive-in Windowless ampler	15	0mm to			Cavan County Council		2	3-0092	2
		Locatio	n	Dates 23	8/01/2024	Engineer Mc Adam Design		SI	neet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Insti	r
					(0.30) 0.30	TOPSOIL Firm greyish brown slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular	×			
0.50	ES					to subrounded fine to coarse.	× · · · · · · · · · · · · · · · · · · ·			
1.00	ES				(2.20)		× · · · · · · · · · · · · · · · · · · ·	▼ 1		20 20 20 20 20 20 20 20 20 20 20 20 20 2
							× • • • • • • • • • • • • • • • • • • •	∇ 1		
2.00	ES		Water strike(1) at 2.00m, rose to 1.20m in 20 mins.		2 50		× · · · · · · · · · · · · · · · · · · ·			
						Complete at 2.50m				
Remarks Terminated o	n possible bedrock/b	boulder					Scale (approx)	Lo	ogged y	
						-	1:50			_
							23-009	10. 92.SI	3H07	

					Site Cavan Regional Sports Centre		N	umb	er	
Geote	ech					Cavan Regional Sports Centre		S	BH	08
Machine : Da	ando Terrier	Dimensi	ons	Ground	Level (mOD)	Client		Jo	ob	
Method : Dr Sa	rive-in Windowless ampler	150)mm to			Cavan County Council		2	3-009	92
		Location	ı	Dates	01/2024	Engineer		s	heet	
						Mc Adam Design			1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	,tr
0.50	ES				(0.30) 0.30	TOPSOIL Firm brown slightly sandy slightly gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.				
1.00	ES				(2.30)					హా దార్త రాజ్రహం ఆర్టి ఇంగ్లా రాజ్యాంత్ ఆర్ట్రెస్ రాజించిందిన భార్థించిన రాజ్యాంత్రిందిన రాజం హార్థాం రాజించిన రాజుత్వారం రాజిం
2.00	ES						× • • • ×			8,5 of 95% 42%
					2.60	Complete at 2.60m	* * * . * .		2200	3200
					E E					
Remarks	n noosible bedreed "				 		Scale	L	ogge	d
ierminated o	n possible bedrock/b	bouider					(approx) 1:50	B	y	
							Figure N 23-009	lo. 92.SI	BH08	3

					Site Cavan Regional Sports Centre			umb	or	
Geote	west ech					Cavan Regional Sports Centre		S	BH	09
Machine : D Method : D Si	ando Terrier rive-in Windowless ampler	Dimensi 150	ons)mm to	Ground	Level (mOD)	Client Cavan County Council		J N 2	ob umb 3-00	er 92
		Location	1	Dates 23	8/01/2024	Engineer		s	heet	
									1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Wate	Ins	str
0.50	ES				(0.30)	TOPSOIL Firm brown slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.			-	
1.00	ES						X · · · · · · · · · · · · · · · · · · ·		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	62 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.00	ES									
3.00	ES					Complete at 3.00m				
Remarks Terminated c	n possible bedrock/k	boulder		1		1	Scale (approx)	LB	ogge y	€
							1:50			
							Figure N 23-009	10. 92.S	BH0	9

	_				Site Cavan Regional Sports Centre			umb	or	
Geote	west 2ch					Cavan Regional Sports Centre		S	BH	10
Machine : Da Method : Dr Sa	ando Terrier rive-in Windowless ampler	Dimensio 150	ons mm to	Ground	Level (mOD)	Client Cavan County Council		Ju N 2	ob umb 3-00	er 92
		Location	I	Dates 23	8/01/2024	Engineer Mc Adam Design		S	heet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	str
0.50	ES				(0.30) (0.30) (0.30) (1.40)	TOPSOIL Firm Brown slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.			6,66,7	
1.00	23				1.70	Complete at 3.40m	× * * * * * *			0,000,000,000,000,000,000,000 200,000,00
2.00	ES									<u>61,055,055,055,055,055,055,055,055,055,05</u>
3.00	ES									
Remarks Terminated o	n possible bedrock/b	oulder		<u> </u>	<u> </u>		Scale (approx)	L/ B	ogge y	d
							1:50			
							Figure N 23-00	10. 92.S	BH10	C

North	west 2ch					Site Cavan Regional Sports Centre		N S	umb BH	er 11
Machine : Da	ando Terrier	Dimensi	ons	Ground	Level (mOD)	Client		J	ob	
Method : Di	rive-in Windowless	150)mm to			Cavan County Council		N 2	umb 3-00	er 92
		Location	1	Dates		Engineer		S	heet	
				24	/01/2024	Mc Adam Design			1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	;tr
					(0.20)	TOPSOIL				
0.50	ES					Firm bluish brown slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.	× · · · · · · · · · · · · · · · · · · ·		-	-
1.00	ES						× · · · · · · · · · · · · · · · · · · ·		585	4.86 800 800 800 800 800
					(2.60)		× · · · · · · · · · · · · · · · · · · ·			
					(2.00)		× · · ·			
2.00	ES						× <u>· · · · · · · · · · · · · · · · · · ·</u>			
							× • • • •			
							× · · · · · · · · · · · · · · · · · · ·			
					2.80	Complete at 2.80m	^.		8800	<u> - 188</u>
					E E					
					E E					
Remarks Terminated o	n possible bedrock/b	oulde					Scale (approx)	L	ogge y	d
							1:50			
							Figure N 23-00§	1 0. 92.S	BH11	1

					Site		N	umber	
Geote	west sch					Cavan Regional Sports Centre		S	BH12
Machine : Da	ando terrier	Dimens	ions	Ground	Level (mOD)	Client		J	ob
Method : Dr Sa	rive-in Windowless ampler	15	0mm to			Cavan County Council		2	umber 3-0092
		Locatio	n	Dates	1/01/2024	Engineer		s	heet
						Mc Adam Design			1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
					0.10	MADE GROUND: Grey angular fine to medium GRAVEL. (Compacted)			
0.50	ES					MADE GROUND: Grey and brown silty sandy angular fine to coarse GRAVEL. Firm greyish brown slightly sandy gravelly silty	× · · · · · · · · · · · · · · · · · · ·		
1.00	ES					CLAY. Sánd is fine to coarse. Gravel is súbangular to subrounded fine to coarse.		▼ 1	
2.00	ES		Water strike(1) at 2.00m, rose to 1.10m in 20 mins.		(3.60)			.∇1	
3.00	ES								
4.00	ES				4.00	Complete at 4.00m	* <u>*</u> ****		0 4000 4000 2000 2000 2000 2000 2000 200
Remarks Terminated o	n possible bedrock/b	ooulder					Scale (approx)	B	ogged y
							1:50		
							Figure N 23-009	lo. 92.S	BH12

						Site Cavan Regional Sports Centre				or
Geote	west ech					Cavan Regional Sports Centre		S	BH	13
Machine : D	ando Terrier	Dimensi	ions	Ground	Level (mOD)	Client		Jo	ob umb	or
Method : D Si	rive-in Windowless ampler	150	Omm to			Cavan County Council		2	3-00	92
		Locatio	ı	Dates	104/0004	Engineer		S	heet	:
				24	//01/2024	Mc Adam Design			1/1	ļ
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	str
0.50 1.00 2.00	ES ES				(1.80)	MADE GROUND: Firm greyish brown slightly sandy gravelly silty CLAY with fragments of red brick. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.				පොර්ග කියාවක් හැදි පත්වා ක්රීයාවක් හැදි පත්වා ක්රීයාව හරි කර්ගාවක් පරියේදු කියාවේ කියාවෙන් කර කර කර කර කර කර කර කර කර ක
						Complete at 2.30m				
Remarks Terminated o	on possible bedrock/b	oulder					Scale (approx)	L(B	ogge y	èd
							1:50			
							Figure N 23-009	lo. 92.S	BH1:	3

						Site		N	umb	er
Geote	west ech					Cavan Regional Sports Centre		S	BH	14
Machine : D	ando Terrier	Dimensi	ons	Ground	Level (mOD)	Client		J	ob	
Method : D Sa	rive-in Windowless ampler	150	omm to			Cavan County Council		2	3-009	ər 92
		Location	1	Dates	/01/2024	Engineer		s	heet	
				27	101/2024	Mc Adam Design			1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	itr
					(0.20)	TOPSOIL				
0.50	ES					Firm bluish brown slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.	× · · · · · · · · · · · · · · · · · · ·	-		
1.00	ES				(2.30)		× • • • • • • • • • • • • • • • • • • •			ar of core and a core of the c
2.00	ES						× · · · · · · · · · · · · · · · · · · ·			ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ
					2.50	Complete at 2.50m	×. · · · · · · · · · · · · · · · · · · ·			8000
Remarks Terminated o	n possible bedrock/b	boulder		1			Scale (approx)	B	ogge y	d
						Ļ	1:50			
							Figure N 23-009	10. 92.S	BH14	ł

	_					Site		N	umbr	or of
Geote	west ech					Cavan Regional Sports Centre		S	BH1	15
Machine : Da	ando Terrier	Dimensi	ions	Ground	Level (mOD)	Client		J	b	
Method : Di Sa	rive-in Windowless ampler	150	Omm to			Cavan County Council		N 2	umbe 3-009	er 92
		Locatio	n	Dates	/01/2024	Engineer		S	heet	
				27	10 112024	Mc Adam Design			1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	tr
					(0.20)	TOPSOIL				
						Firm Brown slightly snady slightly gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular	×			
0.50	ES				(1.10)	to subrounded fine to coarse.	× · · · · ×			
1.00	ES						×		588	
					1.30	Firm grey slightly sandy slightly gravelly silty CLAY.	×			
					E	Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.	×			bo 42000 80000 100000
							× · · · · · · · ·			
2.00	ES				(1.50)		× · · · · · · · · · · · · · · · · · · ·			
							×			9696 - 9
					2.80	Complete at 2.80m	·····			
					E					
					E					
Remarks Terminated o	on possible bedrock/b	oulder					Scale (approx)	L(B	ogge y	d
							1:50			
							Figure N 23-009	lo. 92.S	BH15	5

North	west					Site Cavan Regional Sports Centre		N	umb DU	er 10
Machine : Dr	ando Terrier	D '	•	0						13
Method : Dr	rive-in Windowless ampler	Dimens 15	omm to	Ground	Level (mOD)	Client Cavan County Council		2	ob umb 3-00	er 92
		Locatio	n	Dates	5/01/2024	Engineer		s	heet	
						Mc Adam Design			1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	str
					(0.20)	TOPSOIL				
0.50	ES					Firm grey slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.	× · · · · · · · · · · · · · · · · · · ·	-	-	
1.00	ES						× · · · · · · · · · · · · · · · · · · ·			15 02 0250 42515 5 2 2 2 05 42 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2.00	ES				(2.80)		× · · · · · · · · · · · · · · · · · · ·	▼ 1		e 4 265 of celo 425 80808 +24 00 480 80808 +24 00 480 80 00 0 0 58 0 0 00
							× · · · · · · · · · · · · · · · · · · ·			<u>(* 198</u>) - 4 20 5 0 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3.00	ES		Water strike(1) at 3.00m,		3.00	Complete at 3 00m	×	V 1		
			rose to 2.00m in 20 mins.							
Remarks Terminated o	n possible bedrock/b	oulder					Scale (approx)	LB	ogge y	d
							1:50			
							Figure N	<u>lo.</u> 12 ຄ	RH1	

	_					Site		N	umb	or
Geote	west ech					Cavan Regional Sports Centre		S	BH	22
Machine : D	ando Terrier	Dimens	ions	Ground	Level (mOD)	Client		Je	ob .	
Method : Di Sa	rive-in Windowless ampler	15	Omm to			Cavan County Council		N 2	umb 3-00	er 92
		Locatio	n	Dates	101/2024	Engineer		S	heet	
				20	//01/2024	Mc Adam Design			1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	str
					(0.20)	TOPSOIL				
0.50	ES					Firm bluish brown slightly sandy slightly gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.	× · · · · · · · · · · · · · · · · · · ·			
1.00	ES						× · · · · · · · · · · · · · · · · · · ·			43,55 m2, m3, m3, m4, m3, m3, m3, m3, m3, m3, m3, m3, m3, m3
2.00	ES				(3.80)					bo 42,0¹⁵ or 1,010 or 1,010 or 1,010 40,000 4 ,020 00 00 00 00 00 00 40,000 00 00 00 00 00 00 00 00 00 00 00 0
3.00	ES							-		<mark></mark>
							× · · · · · · · · · · · · · · · · · · ·			
4.00						Complete at 4.00m				
Remarks Terminated c	n possible bedrock/b	oulder			<u> </u>		Scale (approx)	L	ogge v	ed and
							1:50			
							Figure N	lo.		
							23-009	J2.SI	BH22	2

north Geote	west ech					Site Cavan Regional Sports Centre		N S	^{umber} BH23	3
Machine : D Method : D Sa	ando Terrier rive-in Windowless ampler	Dimensi 150	ons)mm to	Ground	Level (mOD)	Client Cavan County Council		Jo N 2	ob umber 3-0092	
		Locatior	1	Dates 25	/01/2024	Engineer Mc Adam Design		S	h eet 1/1	-
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr	_
0.50	ES				(0.30)	TOPSOIL Firm bluish brown slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular	×			
1.00	ES					to subrounded fine to coarse.	× · · · · · · · · · · · · · · · · · · ·		<u></u>	56
1.00	23				(2.50)		× • • • • • • • • • • • • • • • • • • •			
2.00	ES						× · · · · · · · · · · · · · · · · · · ·			1.34 July 536 50 34 July 536
						Complete at 2.80m				
Remarks Terminated o	n possible bedrock/b	oulder			F		Scale (approx)	La	ogged y	_
							1:50 Figure N 23-009	 0. 02.S	BH23	_

						Site		N	umb	er
Geote	ech					Cavan Regional Sports Centre		S	BH	24
Machine : D	ando Terrier	Dimens	ions	Ground	Level (mOD)	Client		J	b	
Method : D Si	rive-in Windowless ampler	150	Omm to			Cavan County Council		2	umb 3-00	er 92
		Locatio	n	Dates	101/2024	Engineer		s	heet	
				20	/01/2024	Mc Adam Design			1/1	I.
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	str
Pemarka						TOPSOIL Firm bluish Brown slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Complete at 2.20m				
Remarks Terminated o	on possible bedrock/b	oulder					Scale (approx)	B	ogge y	⊧d
							1:50			
							Figure N 23-009	lo. 92.S	BH24	4

								Site		Borehole
Geote	west 2ch							Cavan Regional Sports Centre		DBH01
Machine : C	omacchio	305	Casing	Diameter	r	Ground	Level (mOD)	Client		Job
Flush :			_					Cavan County Council		Number
Core Dia: m	nm									23-0092
Method : R	otarv Core	d	Locatio	n		Dates	2/12/2023	Engineer		Sheet
								Mc Adam Design		1/2
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend S
							(0.30)	TOPSOIL		
								Brown slightly gravelly very sandy CLAY. Sand is fine to conse. Gravel is subangular to subrounded fine to conserve the subrounded fine to conserv	o coarse.	
Remarks							<u>-</u>	(a	Scale approx) 1:50 Figure N	Logged By
									23-009	2.DBH01

								Site			Borehole
Geote	west ech							Cavan Regional Sports	Centre		DBH01
Machine : Co	omacchio	305	Casing	Diameter	r	Ground	Level (mOD)	Client			Job
Flush :								Cavan County Council			Number
Core Dia: m	nm										23-0092
Method : Re	otary Core	d	Locatio	n		Dates 12	/12/2023	Engineer			Sheet
								Mc Adam Design			2/2
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)		Description		Legend Safe
Remarks								Complete at 15.00m		, Scale	
										approx)	By
										Figure N	
										23-009	2.DBH01

								Site		Borehole
North Geote	west ech							Cavan Regional Sports Centre		DBH02
Machine · Co	omacchio	305	Casing	Diamata	-	Ground		Client		lah
Flush :			Casing	Diamete		Ground	Level (IIIOD)	Cavan County Council		Number
Core Dia: m	nm									23-0092
Method : Re	otarv Core	d	Locatio	n		Dates	/12/2023	Engineer		Sheet
	, -							Mc Adam Design		1/2
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Kater Vater
							(0.20)		r-	
								Brown slightly gravelly very sandy CLAY. Sand is fine coarse. Gravel is subangular to subrounded fine to co Grey slightly sandy slightly gravelly silty CLAY. Sand to coarse. Gravel is subangular to subrounded fine to coarse.	∍ to coarse.	
Remarks							F	(Scale (approx)	Logged By
									1:50	
									Figure N 23-009	o. 2.DBH02
1									_0 000	

								Site			Boreho	ole
Geote	west ech							Cavan Regional Sports C	entre		DBH)2
Machine : Co	omacchio	305	Casing	Diameter	r	Ground	Level (mOD)	Client			Job	
Flush :								Cavan County Council			Numbe	er N2
Core Dia: m	nm										23-008	
Method : R	otary Core	d	Locatio	n		Dates 13	/12/2023	Engineer			Sheet	
								Mc Adam Design			2/2	
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	ſ	Description		Legend	Water
Remarks								Complete at 15.00m		, Scale ,		d
										Scale (approx)	By	u
										Figure N	0	
										23-009	2.DBH02	

								Site		Borehole Number
Geote	west ech						Cavan Regional Sports Centre		DBH03	
Machine : C	omacchio	305	Casing	Diameter	r	Ground	Level (mOD)	Client		Job
Flush :			J					Cavan County Council		Number
Core Dia: m	nm									23-0092
Method : R	otary Core	d	Locatio	n		Dates	/12/2023	Engineer		Sheet
					1					1/2
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Kater Kegend
Remarks								TOPSOIL Grey slightly sandy slightly gravelly sity CLAY with boulder content. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.	Scale	
Remarks									Scale (approx)	Logged By
									1:50	
									Figure N	lo.
									23-009	2.DBH03

								Site			Boreh	ole
North Geote	west ech							Cavan Regional Sports Ce	ntre		DBH)3
Machine · Co	omacchio (305	Cooing	Diamata	-	Ground		Client			lah	
Flush :			Casing	Diameter	<u></u>	Ground		Cavan County Council			Numbe	er
Core Dia: m	nm										23-009	92
Method : R	otarv Core	d	Locatio	n		Dates	/12/2023	Engineer			Sheet	
	,							Mc Adam Design			2/2	
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription		Legend	Water
Remarks								Complete at 15.00m		Scale		d
										(approx)	By	4
										Figure N	0	
										23-009	3. 2.DBH03	5
								Site		Borehole		
--------------	-------------	------------	------------	----------	---------------	----------------	-----------------------------	---	-------------------	--------------		
Geote	west ech							Cavan Regional Sports Centre		DBH04		
Machine : C	omacchio	305	Casing	Diameter	r	Ground	Level (mOD)	Client		Job		
Flush :			cuong	Diamoto		Ground	20101 (11102)	Cavan County Council		Number		
Core Dia: m	nm									23-0092		
Method : R	otary Core	d	Locatio	n		Dates 12	2/12/2023	Engineer		Sheet		
								Mc Adam Design		1/2		
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend S		
Remarks								TOPSOL Grey slightly sandy slightly gravelly sily CLAY with boulder content. Sand is fine to coarse. Subangular to subrounded fine to coarse.	- low			
Remarks									Scale (approx)	Logged By		
									1:50			
									Figure N	lo.		
									23-009	2.DBH04		

					Site		Borehole
Northwest Geotech					Cavan Regional Sports Centre		DBH04
Machine : Comacchio 305	Casing Diame	ter	Ground	l evel (mOD)	Client		Joh
Flush :	ousing Dunie		Cround		Cavan County Council		Number
Core Dia: mm							23-0092
Method : Rotary Cored	Location		Dates 12	/12/2023	Engineer		Sheet
					Mc Adam Design		2/2
Depth TCR SCR (m) (%) (%)	RQD (%) FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Kater Vater
Remarks					Complete at 15.00m	Scale	
						(approx)	By
						1:50	
						Figure N 23-009	o. 2.DBH04

								Site		Borehole
Geote	west ech							Cavan Regional Sports Centre		DBH05
Machine : C	omacchio	305	Casing	Diameter	r	Ground	Level (mOD)	Client		Job
Flush :			- acting					Cavan County Council		Number
Core Dia: m	nm									23-0092
Method : R	otary Core	d	Locatio	n		Dates 16	/12/2023	Engineer		Sheet
								Mc Adam Design		1/2
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend S
Remarks								TOPSOL Grey slightly sandy slightly gravelly sily CLAY with boulder content. Sand is fine to coarse. Subangular to subrounded fine to coarse.	- low	
Remarks									Scale (approx)	Logged By
									1:50	
									Figure N	lo.
									23-009	2.DBH05

								Site			Boreho	ole
North Geote	west ech							Cavan Regional Sports Centre			DBHC	")5
Machine · Co	omacchio (305	Cooing	Diamata	-	Ground		Client			lah	
Flush :			Casing	Diametei	I	Ground		Cavan County Council			Numbe	ər
Core Dia: m	nm										23-009	92
Method : R	otarv Core	d	Locatio	n		Dates 16	/12/2023	Engineer			Sheet	
	,					-		Mc Adam Design			2/2	
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Descri	otion		Legend	Water
Remarks								Complete at 15.00m		Scale		d
									(a	approx)	By	u
									-	Figure M	0	
										23-0092	0. 2.DBH05	

									Site		Boreh	ole
Geote	west ech								Cavan Regional Sports Centre		DBH	۹۲ 06
Machine : Co	omacchio	305	Casing	Diamete	r	Ground	l evel (m(וחנ	Client		Job	
Flush :			- and a second			e.eu.u		,	Cavan County Council		Number 23-009	ər A2
Core Dia: m	nm										20 000	
Method : Ro	otary Core	d	Locatio	n		Dates 05	5/12/2023		Engineer Mc Adam Design		Sheet 1/2	
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m)	(22	Description		Legend	Nater
							(0.2	20) 20	TOPSOIL			
								20)	Grey LIMESTONE	low		
Remarks							<u> </u>		 	Scale (approx) 1:50 Figure N	Logge By	d
										23-009	2.DBH06	\$

								Site			Borehole
North Geote	west ech							Cavan Regional Sports Ce	ntre		DBH06
Machine · Co	omacchio (305	Cooing	Diamata	-	Ground		Client			lah
Flush :			Casing	Diametei		Ground		Cavan County Council			Number
Core Dia: m	nm										23-0092
Method : R	otarv Core	d	Locatio	n		Dates	/12/2023	Engineer			Sheet
	,							Mc Adam Design			2/2
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription		Legend S
Remarks								Complete at 15.00m		Scale	
Remarks										Scale (approx)	Logged By
										1:50	-
										Figure N 23-009	IO. 2.DBH06

								Site		Borehole
North Geote	west ech							Cavan Regional Sports Centre		DBH07
Machine : C	omacchio	305	Casing	Diameter		Ground	Level (mOD)	Client		Joh
Flush .			Casing	Diameter		Ground	Level (IIIOD)	Cavan County Council		Number
Core Dia: m	m									23-0092
Mothod I D	otony Coro	d	Locatio	n		Dates	110/0000	Engineer		Sheet
		u					12/2023	Mc Adam Design		1/2
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Kater Xater
Remarks								TOPSOIL Grey silty CLAY. Greyish brown slightly sandy slightly gravelly silty O low boulder content. Sand is fine to coarse. Gravel subangular to subrounded fine to coarse.	CLAY with is	
Remarks									Scale (approx)	Logged By
									1:50	
									Figure N 23-009	o. 2.DBH07

								Site			Boreho	ole
North Geote	west ech							Cavan Regional Sports Centre			DBH)7
Machine : Co	omacchio	305	Casing	Diamoto	r	Ground	Level (mOD)	Client			Joh	
Flush :			ousing	Diameter		Ground		Cavan County Council			Numbe	ər
Core Dia: m	nm							,			23-009	92
Method : Ro	otary Core	d	Locatio	n		Dates 06	/12/2023	Engineer			Sheet	
	-							Mc Adam Design			2/2	
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Descri	ption		Legend	Water
Remarks								Complete at 15.00m		Scale		d
										(approx)	By	
										1:50		
										Figure No	ס. ס חפויס	
										23-0092	∠.DRH02	

APPENDIX E: Soil Laboratory Data

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	24-02411-1		
Initial Date of Issue:	15-Feb-2024		
Re-Issue Details:			
Client	Northwest Geotech		
Client Address:	Unit 9 Northwest Business Complex Skeoge Industrial Estate Derry IRELAND		
Contact(s):	Paul McNamara		
Project	23-0092 Cavan RS		
Quotation No.:		Date Received:	26-Jan-2024
Order No.:		Date Instructed:	26-Jan-2024
No. of Samples:	11		
Turnaround (Wkdays):	15	Results Due:	15-Feb-2024
Date Approved:	01-Feb-2024		
Approved By:			
and			

Details:

2183

Final Report

Stuart Henderson, Technical Manager

For details about application of accreditation to specific matrix types, please refer to the Table at the back of this report

Client: Northwest Geotech			Chei	mtest Jo	ob No.:	24-02411	24-02411	24-02411	24-02411	24-02411	24-02411	24-02411
Quotation No.:		(Chemte	st Sam	ple ID.:	1759084	1759085	1759086	1759088	1759089	1759090	1759091
Order No.:			Clier	nt Samp	le Ref.:	ES1	ES2	ES1	ES1	ES4	ES1	ES3
			Sa	ample Lo	ocation:	SBH01	SBH01	SBH02	SBH03	SBH03	SBH04	SBH04
				Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Тор Dep	oth (m):	0.5	1	0.5	0.5	3	0.5	2
				Date Sa	ampled:	19-Jan-2024	19-Jan-2024	19-Jan-2024	19-Jan-2024	19-Jan-2024	19-Jan-2024	19-Jan-2024
				Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand HW0	OL Code	Accred.	SOP	Units	LOD							
АСМ Туре		U	2192		N/A	-	-	-	-	-	-	-
Asbestos Identification		U	2192		N/A	No Asbestos	No Asbestos	No Asbestos	No Asbestos	No Asbestos	No Asbestos	No Asbestos
		<u> </u>				Detected	Detected	Detected	Detected	Detected	Detected	Detected
Moisture		N	2030	%	0.020	10	9.8	22	20	20	17	13
Soil Colour		N	2040		N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown
Other Material		Ν	2040		N/A	Stones	Stones	Stones	Stones	Stones	Stones	Stones
Soil Texture		N	2040		N/A	Sand	Clay	Clay	Clay	Clay	Clay	Sand
pH at 20C		М	2010		4.0	7.7	8.0	7.9	7.8	7.7	7.9	7.9
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Cyanide (Free)		М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Cyanide (Total)		M	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	0.60	< 0.50	< 0.50	< 0.50
Arsenic		M	2455	mg/kg	0.5	5.8	3.5	9.2	5.5	4.3	7.6	5.7
Cadmium		М	2455	mg/kg	0.10	0.62	< 0.10	0.34	0.16	0.23	0.34	0.15
Chromium		М	2455	mg/kg	0.5	24	17	43	24	21	34	24
Copper		М	2455	mg/kg	0.50	17	12	20	14	11	23	18
Mercury		М	2455	mg/kg	0.05	< 0.05	< 0.05	0.06	< 0.05	< 0.05	< 0.05	< 0.05
Nickel		М	2455	mg/kg	0.50	36	24	60	38	30	50	37
Lead		M	2455	mg/kg	0.50	12	8.5	21	12	9.7	18	14
Selenium		M	2455	mg/kg	0.25	0.62	0.55	1.2	0.74	0.58	0.79	0.58
Zinc		M	2455	mg/kg	0.50	58	36	77	51	46	74	58
Aliphatic VPH >C5-C6	HS_2D_AL	<u> </u>	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C7	HS_2D_AL	0	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C7-C8	HS_2D_AL	0	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C8 (Sum)	HS_2D_AL	N	2780	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic VPH >C8-C10	HS_2D_AL	0	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphotic CPH >C5-C10	HS_2D_AL	U M	2780	mg/kg	0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Aliphatic EPH > C12 C16 MC	1_AL_2D_#1	IVI	2690	mg/kg	2.00	< 2.0	< 2.0	< 2.0	3.2	2.3	< 2.0	< 2.0
Aliphatic EPH > C16 C21 MC	1_AL_2D_#1	IVI	2090	mg/kg	2.00	< 1.0	< 1.0	< 1.0	4.3	2.9	< 1.0	< 1.0
Aliphatic EPH > C10-C21 MC EF	1_AL_2D_#1	IVI M	2090	mg/kg	2.00	< 2.0 5.0	< 2.0 5 7	< 2.0	5.4 6.1	3.2	< 2.0	< 2.0
Aliphatic EPH > C21-C35 MC EF	1_AL_2D_#1	IVI	2090	mg/kg	3.00	5.0	5.7	3.0 < 10	0.1 < 10	4.3	< 3.0	3.3 < 10
Total Aliphatic EPH \C10-C35 MC	- <u>_</u> ~- <u></u> ∠D_#1	M	2690	mg/kg	5.00	66	62	60	10	13	< 5.0	< 5.0
Total Aliphatic EPH >C10-C40 MC	- <u>-</u>	N	2690	mg/kg	10.00	- 10	- 10	- 10	10	13	< 10	< 10
Aromatic VPH >C5-C7	HS 2D AR		2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	< 0.05
Aromatic V/PH >C7-C8	IS_2D_AR	11	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic VPH >C8-C10	HS 2D AR	11	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total Aromatic VPH >C5-C10	HS 2D AR	U	2780	ma/ka	0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25

Client: Northwest Geotech			Che	mtest J	ob No.:	24-02411	24-02411	24-02411	24-02411	24-02411	24-02411	24-02411
Quotation No.:		(Chemte	est Sam	ple ID.:	1759084	1759085	1759086	1759088	1759089	1759090	1759091
Order No.:			Clie	nt Samp	le Ref.:	ES1	ES2	ES1	ES1	ES4	ES1	ES3
			Sa	ample Lo	ocation:	SBH01	SBH01	SBH02	SBH03	SBH03	SBH04	SBH04
				Sampl	e Type:	SOIL						
				Top De	pth (m):	0.5	1	0.5	0.5	3	0.5	2
				Date Sa	ampled:	19-Jan-2024						
				Asbest	os Lab:	COVENTRY						
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
Aromatic EPH >C10-C12 MC	EH_AR_2D_#1	U	2690	mg/kg	1.00	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic EPH >C12-C16 MC	EH_AR_2D_#1	U	2690	mg/kg	1.00	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic EPH >C16-C21 MC	EH_AR_2D_#1	U	2690	mg/kg	2.00	2.1	2.1	2.1	2.5	< 2.0	3.2	2.5
Aromatic EPH >C21-C35 MC	EH_AR_2D_#1	U	2690	mg/kg	2.00	< 2.0	< 2.0	< 2.0	3.5	2.1	< 2.0	< 2.0
Aromatic EPH >C35-C40 MC	EH_AR_2D_#1	N	2690	mg/kg	1.00	1.0	< 1.0	1.0	1.4	1.2	1.4	< 1.0
Total Aromatic EPH >C10-C35 MC	EH_AR_2D_#1	U	2690	mg/kg	5.00	< 5.0	< 5.0	< 5.0	6.1	< 5.0	< 5.0	< 5.0
Total Aromatic EPH >C10-C40 MC	EH_AR_2D_#1	N	2690	mg/kg	10.00	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Total EPH >C10-C35 MC	EH_Total_2D_#1	U	2690	mg/kg	10.00	11	< 10	< 10	25	17	< 10	< 10
Total EPH >C10-C40 MC	EH_Total_2D_#1	N	2690	mg/kg	10.00	12	< 10	< 10	26	18	< 10	< 10
Organic Matter		М	2625	%	0.40	0.63	0.51	0.62	0.73	1.1	0.48	0.88
Naphthalene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	0.22	< 0.10	< 0.10	< 0.10
Anthracene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	0.11	< 0.10	< 0.10	< 0.10
Fluoranthene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	0.44	< 0.10	< 0.10	< 0.10
Pyrene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	0.57	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	0.24	< 0.10	< 0.10	< 0.10
Chrysene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	0.19	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's		М	2700	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Dichlorodifluoromethane		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloromethane		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane		М	2760	µg/kg	20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Chloroethane		U	2760	µg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Trichlorofluoromethane		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dichloromethane		Ν	2760	µg/kg	50	< 50	< 50	< 50	< 50	< 50	< 50	< 50
Trans 1,2-Dichloroethene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Client: Northwest Geotech			Che	mtest J	ob No.:	24-02411	24-02411	24-02411	24-02411	24-02411	24-02411	24-02411
Quotation No.:		(Chemte	st Sam	ple ID.:	1759084	1759085	1759086	1759088	1759089	1759090	1759091
Order No.:			Clie	nt Samp	le Ref.:	ES1	ES2	ES1	ES1	ES4	ES1	ES3
			Sa	ample Lo	ocation:	SBH01	SBH01	SBH02	SBH03	SBH03	SBH04	SBH04
				Sampl	e Type:	SOIL						
				Top De	oth (m):	0.5	1	0.5	0.5	3	0.5	2
				Date Sa	ampled:	19-Jan-2024						
				Asbest	os Lab:	COVENTRY						
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
cis 1,2-Dichloroethene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromochloromethane		U	2760	µg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Trichloromethane		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloromethane		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Benzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane		М	2760	µg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Trichloroethene		N	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromomethane		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane		М	2760	µg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
cis-1,3-Dichloropropene		N	2760	µg/kg	10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Toluene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,3-Dichloropropene		N	2760	µg/kg	10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
1,1,2-Trichloroethane		М	2760	µg/kg	10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Tetrachloroethene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane		U	2760	µg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Dibromochloromethane		U	2760	µg/kg	10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
1,2-Dibromoethane		М	2760	µg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chlorobenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane		М	2760	µg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Ethylbenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Styrene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tribromomethane		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromobenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichloropropane		N	2760	µg/kg	50	< 50	< 50	< 50	< 50	< 50	< 50	< 50
N-Propylbenzene		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Chlorotoluene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene		M	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Chlorotoluene		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tert-Butylbenzene		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Sec-Butylbenzene		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Client: Northwest Geotech		Chemtest Job No.:		24-02411	24-02411	24-02411	24-02411	24-02411	24-02411	24-02411		
Quotation No.:		(Chemte	st Sam	ple ID.:	1759084	1759085	1759086	1759088	1759089	1759090	1759091
Order No.:			Clier	nt Samp	le Ref.:	ES1	ES2	ES1	ES1	ES4	ES1	ES3
			Sa	ample Lo	ocation:	SBH01	SBH01	SBH02	SBH03	SBH03	SBH04	SBH04
				Sampl	e Type:	SOIL						
				Тор Dep	pth (m):	0.5	1	0.5	0.5	3	0.5	2
				Date Sa	ampled:	19-Jan-2024						
				Asbest	os Lab:	COVENTRY						
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
4-Isopropyltoluene		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
N-Butylbenzene		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-Chloropropane		U	2760	µg/kg	50	< 50	< 50	< 50	< 50	< 50	< 50	< 50
1,2,4-Trichlorobenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene		Ν	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene		U	2760	µg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Methyl Tert-Butyl Ether		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
PCB 28		U	2815	mg/kg	0.010			< 0.010			< 0.010	
PCB 52		U	2815	mg/kg	0.010			< 0.010			< 0.010	
PCB 101		U	2815	mg/kg	0.010			< 0.010			< 0.010	
PCB 118		U	2815	mg/kg	0.010			< 0.010			< 0.010	
PCB 153		U	2815	mg/kg	0.010			< 0.010			< 0.010	
PCB 138		U	2815	mg/kg	0.010			< 0.010			< 0.010	
PCB 180		U	2815	mg/kg	0.010			< 0.010			< 0.010	
Total PCBs (7 Congeners)		U	2815	mg/kg	0.10			< 0.10			< 0.10	
Total Phenols		М	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

Client: Northwest Geotech		Che	mtest Jo	ob No.:	24-02411	24-02411	24-02411	24-02411	
Quotation No.:		(Chemte	st Sam	ple ID.:	1759092	1759093	1759095	1759096
Order No.:			Clie	nt Samp	le Ref.:	ES2	ES1	ES1	ES3
			Sa	ample Lo	ocation:	SBH06	SBH11	SBH15	SBH15
				Sampl	e Type:	SOIL	SOIL	SOIL	SOIL
				Top Dep	oth (m):	1	0.5	0.5	2
				Date Sa	ampled:	19-Jan-2024	17-Jan-2024	17-Jan-2024	17-Jan-2024
				Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	HWOL Code	Accred.	SOP	Units	LOD				
АСМ Туре		U	2192		N/A	-	-	-	-
Ashestes Identification			2102		NI/A	No Asbestos	No Asbestos	No Asbestos	No Asbestos
Aspestos identification		0	2192		N/A	Detected	Detected	Detected	Detected
Moisture		N	2030	%	0.020	15	1.2	16	10
Soil Colour		N	2040		N/A	Brown	Grey	Brown	Brown
Other Material		N	2040		N/A	Stones and Roots	Stones	Stones	Stones
Soil Texture		N	2040		N/A	Sand	Gravel	Sand	Clay
pH at 20C		М	2010		4.0	7.9	8.6	8.4	8.3
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010	< 0.010	< 0.010	< 0.010	< 0.010
Cyanide (Free)		М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50
Cyanide (Total)		М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50
Arsenic		М	2455	mg/kg	0.5	4.4	11	5.2	9.3
Cadmium		М	2455	mg/kg	0.10	< 0.10	< 0.10	0.26	0.35
Chromium		М	2455	mg/kg	0.5	23	56	22	34
Copper		М	2455	mg/kg	0.50	11	43	14	24
Mercury		М	2455	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel		М	2455	mg/kg	0.50	25	100	32	50
Lead		М	2455	mg/kg	0.50	11	16	11	20
Selenium		М	2455	mg/kg	0.25	0.79	0.40	0.61	1.1
Zinc		М	2455	mg/kg	0.50	50	71	48	74
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C7-C8	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C8 (Sum)	HS_2D_AL	N	2780	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic VPH >C8-C10	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total Aliphatic VPH >C5-C10	HS_2D_AL	U	2780	mg/kg	0.25	< 0.25	< 0.25	< 0.25	< 0.25
Aliphatic EPH >C10-C12 MC	EH_AL_2D_#1	М	2690	mg/kg	2.00	< 2.0	< 2.0	< 2.0	< 2.0
Aliphatic EPH >C12-C16 MC	EH_AL_2D_#1	М	2690	mg/kg	1.00	3.0	< 1.0	< 1.0	< 1.0
Aliphatic EPH >C16-C21 MC	EH_AL_2D_#1	М	2690	mg/kg	2.00	2.2	< 2.0	< 2.0	< 2.0
Aliphatic EPH >C21-C35 MC	EH_AL_2D_#1	М	2690	mg/kg	3.00	3.7	< 3.0	< 3.0	< 3.0
Aliphatic EPH >C35-C40 MC	EH_AL_2D_#1	N	2690	mg/kg	10.00	< 10	< 10	< 10	< 10
Total Aliphatic EPH >C10-C35 MC	EH_AL_2D_#1	М	2690	mg/kg	5.00	11	< 5.0	< 5.0	< 5.0
Total Aliphatic EPH >C10-C40 MC	EH_AL_2D_#1	N	2690	mg/kg	10.00	11	< 10	< 10	< 10
Aromatic VPH >C5-C7	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic VPH >C7-C8	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic VPH >C8-C10	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total Aromatic VPH >C5-C10	HS 2D AR	U	2780	ma/ka	0.25	< 0.25	< 0.25	< 0.25	< 0.25

Client: Northwest Geotech		Chemtest Job No.				24-02411	24-02411	24-02411	24-02411
Quotation No.:		(Chemte	st Sam	ole ID.:	1759092	1759093	1759095	1759096
Order No.:			Clie	nt Samp	le Ref.:	ES2	ES1	ES1	ES3
			Sa	ample Lo	cation:	SBH06	SBH11	SBH15	SBH15
				Sample	e Type:	SOIL	SOIL	SOIL	SOIL
				Top Dep	oth (m):	1	0.5	0.5	2
				Date Sa	mpled:	19-Jan-2024	17-Jan-2024	17-Jan-2024	17-Jan-2024
				Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	HWOL Code	Accred.	SOP	Units	LOD				
Aromatic EPH >C10-C12 MC	EH_AR_2D_#1	U	2690	mg/kg	1.00	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic EPH >C12-C16 MC	EH_AR_2D_#1	U	2690	mg/kg	1.00	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic EPH >C16-C21 MC	EH_AR_2D_#1	U	2690	mg/kg	2.00	4.5	5.3	3.1	3.2
Aromatic EPH >C21-C35 MC	EH_AR_2D_#1	U	2690	mg/kg	2.00	< 2.0	< 2.0	< 2.0	< 2.0
Aromatic EPH >C35-C40 MC	EH_AR_2D_#1	N	2690	mg/kg	1.00	1.3	< 1.0	< 1.0	< 1.0
Total Aromatic EPH >C10-C35 MC	EH_AR_2D_#1	U	2690	mg/kg	5.00	6.2	5.8	< 5.0	< 5.0
Total Aromatic EPH >C10-C40 MC	EH_AR_2D_#1	Ν	2690	mg/kg	10.00	< 10	< 10	< 10	< 10
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50
Total EPH >C10-C35 MC	EH_Total_2D_#1	U	2690	mg/kg	10.00	17	< 10	< 10	< 10
Total EPH >C10-C40 MC	EH_Total_2D_#1	N	2690	mg/kg	10.00	18	< 10	< 10	< 10
Organic Matter		М	2625	%	0.40	0.79	1.2	0.70	0.45
Naphthalene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's		М	2700	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0
Dichlorodifluoromethane		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloromethane		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane		М	2760	µg/kg	20	< 20	< 20	< 20	< 20
Chloroethane		U	2760	µg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0
Trichlorofluoromethane		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dichloromethane		N	2760	µg/kg	50	< 50	< 50	< 50	< 50
Trans 1,2-Dichloroethene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1.1-Dichloroethane		М	2760	ua/ka	1.0	< 1.0	< 1.0	< 1.0	< 1.0

Client: Northwest Geotech		Chemtest Job No.:				24-02411	24-02411	24-02411	24-02411
Quotation No.:		(Chemte	st Sam	ole ID.:	1759092	1759093	1759095	1759096
Order No.:			Clier	nt Samp	le Ref.:	ES2	ES1	ES1	ES3
			Sa	mple Lo	cation:	SBH06	SBH11	SBH15	SBH15
				Sampl	e Type:	SOIL	SOIL	SOIL	SOIL
				Top Dep	oth (m):	1	0.5	0.5	2
				Date Sa	mpled:	19-Jan-2024	17-Jan-2024	17-Jan-2024	17-Jan-2024
				Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	HWOL Code	Accred.	SOP	Units	LOD				
cis 1,2-Dichloroethene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromochloromethane		U	2760	µg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0
Trichloromethane		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloromethane		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Benzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane		М	2760	µg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0
Trichloroethene		N	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromomethane		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane		М	2760	µg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0
cis-1,3-Dichloropropene		N	2760	µg/kg	10	< 10	< 10	< 10	< 10
Toluene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,3-Dichloropropene		N	2760	µg/kg	10	< 10	< 10	< 10	< 10
1,1,2-Trichloroethane		М	2760	µg/kg	10	< 10	< 10	< 10	< 10
Tetrachloroethene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane		U	2760	µg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0
Dibromochloromethane		U	2760	µg/kg	10	< 10	< 10	< 10	< 10
1,2-Dibromoethane		М	2760	µg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chlorobenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane		М	2760	µg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0
Ethylbenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Styrene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tribromomethane		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromobenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichloropropane		N	2760	µg/kg	50	< 50	< 50	< 50	< 50
N-Propylbenzene		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Chlorotoluene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Chlorotoluene		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tert-Butylbenzene		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Sec-Butylbenzene		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0

Client: Northwest Geotech			Che	mtest J	ob No.:	24-02411	24-02411	24-02411	24-02411
Quotation No.:		(Chemte	st Sam	ple ID.:	1759092	1759093	1759095	1759096
Order No.:			Clie	nt Samp	le Ref.:	ES2	ES1	ES1	ES3
			Sa	ample Lo	ocation:	SBH06	SBH11	SBH15	SBH15
				Sampl	e Type:	SOIL	SOIL	SOIL	SOIL
			Top Depth (m):				0.5	0.5	2
			Date Sampled:				17-Jan-2024	17-Jan-2024	17-Jan-2024
		Asbestos Lab: (COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	HWOL Code	Accred.	SOP	Units	LOD				
4-Isopropyltoluene		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
N-Butylbenzene		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-Chloropropane		U	2760	µg/kg	50	< 50	< 50	< 50	< 50
1,2,4-Trichlorobenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene		Ν	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene		U	2760	µg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0
Methyl Tert-Butyl Ether		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
PCB 28		U	2815	mg/kg	0.010	< 0.010	< 0.010		
PCB 52		U	2815	mg/kg	0.010	< 0.010	< 0.010		
PCB 101		U	2815	mg/kg	0.010	< 0.010	< 0.010		
PCB 118		U	2815	mg/kg	0.010	< 0.010	< 0.010		
PCB 153		U	2815	mg/kg	0.010	< 0.010	< 0.010		
PCB 138		U	2815	mg/kg	0.010	< 0.010	< 0.010		
PCB 180		U	2815	mg/kg	0.010	< 0.010	< 0.010		
Total PCBs (7 Congeners)		U	2815	mg/kg	0.10	< 0.10	< 0.10		
Total Phenols		М	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10

Test Methods

SOP	Title	Parameters included	Method summary	Water Accred.
2010	pH Value of Soils	pH at 20°C	pH Meter	
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.	
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930	
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES	
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry	
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.	
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.	
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.	
2690	EPH A/A Split	Aliphatics: >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C40 Aromatics: >C10-C12, >C12-C16, >C16- C21, >C21-C35, >C35-C40	Acetone/Heptane extraction / GCxGC FID detection	
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC- FID detection is non-selective and can be subject to interference from co-eluting compounds)	
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.	
2780	VPH A/A Split	Aliphatics: >C5–C6, >C6–C7,>C7–C8,>C8- C10 Aromatics: >C5–C7,>C7-C8,>C8–C10	Water extraction / Headspace GCxGC FID detection	
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS	
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1-Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.	

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"
- SOP Standard operating procedure
- LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

Water Sample Category Key for Accreditation

DW - Drinking Water GW - Ground Water LE - Land Leachate NA - Not Applicable PL - Prepared Leachate PW - Processed Water

Report Information

RE - Recreational Water SA - Saline Water SW - Surface Water TE - Treated Effluent TS - Treated Sewage UL - Unspecified Liquid

Clean Up Codes

NC - No Clean Up MC - Mathematical Clean Up FC - Florisil Clean Up

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	24-02939-1		
Initial Date of Issue:	15-Feb-2024		
Re-Issue Details:			
Client	Northwest Geotech		
Client Address:	Unit 9 Northwest Business Complex Skeoge Industrial Estate Derry IRELAND		
Contact(s):	Paul McNamara		
Project	23-0092 Cavan RS		
Quotation No.:		Date Received:	31-Jan-2024
Order No.:		Date Instructed:	31-Jan-2024
No. of Samples:	10		
Turnaround (Wkdays):	12	Results Due:	15-Feb-2024
Date Approved:	06-Feb-2024		
Approved By:			
and			

Details:

2183

Final Report

Stuart Henderson, Technical Manager

For details about application of accreditation to specific matrix types, please refer to the Table at the back of this report

Client: Northwest Geotech		Chemtest Job No.:		24-02939	24-02939	24-02939	24-02939	24-02939	24-02939	24-02939		
Quotation No.:		(Chemte	est Sam	ple ID.:	1760594	1760595	1760596	1760597	1760598	1760599	1760600
Order No.:			Clie	nt Samp	le Ref.:	ES1	ES1	ES2	ES3	ES1	ES2	ES1
			Sa	ample Lo	ocation:	SBH07	SBH08	SBH09	SBH10	SBH14	SBH14	SBH16
				Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De	pth (m):	0.50	0.50	1.00	2.00	0.50	1.00	0.50
				Date Sa	ampled:	19-Jan-2024	16-Jan-2024	16-Jan-2024	16-Jan-2024	23-Jan-2024	23-Jan-2024	23-Jan-2024
				Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
АСМ Туре		U	2192		N/A	-	-	-	-	-	-	-
Ashestos Identification		<u>п</u>	2192		N/A	No Asbestos	No Asbestos	No Asbestos	No Asbestos	No Asbestos	No Asbestos	No Asbestos
		Ŭ	2102		19/73	Detected	Detected	Detected	Detected	Detected	Detected	Detected
Moisture		N	2030	%	0.020	14	20	23	22	20	21	23
Soil Colour		N	2040		N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown
Other Material		Ν	2040		N/A	Stones	Stones and Roots	Stones	Stones	Stones and Roots	Stones and Roots	Stones
Soil Texture		N	2040		N/A	Clay	Clay	Clay	Clay	Clay	Clay	Clay
pH at 20C		М	2010		4.0	8.3	7.6	7.8	7.6	7.6	7.5	7.5
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Cyanide (Free)		М	2300	mg/kg	0.50	< 0.50	[B] < 0.50	[B] < 0.50	[B] < 0.50	< 0.50	< 0.50	< 0.50
Cyanide (Total)		М	2300	mg/kg	0.50	< 0.50	[B] < 0.50	[B] < 0.50	[B] < 0.50	< 0.50	< 0.50	< 0.50
Arsenic		М	2455	mg/kg	0.5	8.6	10	10	12	5.4	11	8.3
Cadmium		М	2455	mg/kg	0.10	0.54	0.72	0.75	0.83	0.14	0.46	0.53
Chromium		М	2455	mg/kg	0.5	35	42	55	55	35	44	42
Copper		М	2455	mg/kg	0.50	24	21	24	27	13	20	19
Mercury		М	2455	mg/kg	0.05	< 0.05	0.06	0.07	0.09	< 0.05	0.06	0.07
Nickel		М	2455	mg/kg	0.50	42	54	69	70	38	53	51
Lead		М	2455	mg/kg	0.50	19	22	24	26	14	19	20
Selenium		М	2455	mg/kg	0.25	1.2	1.3	1.6	1.5	0.94	1.3	1.1
Zinc		М	2455	mg/kg	0.50	79	80	98	110	61	82	80
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	[B] < 0.05	[B] < 0.05	[B] < 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	[B] < 0.05	[B] < 0.05	[B] < 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C7-C8	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	[B] < 0.05	[B] < 0.05	[B] < 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C8 (Sum)	HS_2D_AL	N	2780	mg/kg	0.10	< 0.10	[B] < 0.10	[B] < 0.10	[B] < 0.10	< 0.10	< 0.10	< 0.10
Aliphatic VPH >C8-C10	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	[B] < 0.05	[B] < 0.05	[B] < 0.05	< 0.05	< 0.05	< 0.05
Total Aliphatic VPH >C5-C10	HS_2D_AL	U	2780	mg/kg	0.25	< 0.25	[B] < 0.25	[B] < 0.25	[B] < 0.25	< 0.25	< 0.25	< 0.25
Aliphatic EPH >C10-C12 MC	EH_AL_2D_#1	М	2690	mg/kg	2.00	< 2.0	[B] < 2.0	[B] < 2.0	[B] 2.3	< 2.0	< 2.0	< 2.0
Aliphatic EPH >C12-C16 MC	EH_AL_2D_#1	М	2690	mg/kg	1.00	2.2	[B] < 1.0	[B] 2.1	[B] 3.6	< 1.0	4.9	1.8
Aliphatic EPH >C16-C21 MC	EH_AL_2D_#1	М	2690	mg/kg	2.00	< 2.0	[B] < 2.0	[B] < 2.0	[B] 3.0	< 2.0	4.6	< 2.0
Aliphatic EPH >C21-C35 MC	EH_AL_2D_#1	М	2690	mg/kg	3.00	3.1	[B] < 3.0	[B] < 3.0	[B] 5.3	< 3.0	7.5	< 3.0
Aliphatic EPH >C35-C40 MC	EH_AL_2D_#1	N	2690	mg/kg	10.00	< 10	[B] < 10	[B] < 10	[B] < 10	< 10	< 10	< 10
Total Aliphatic EPH >C10-C35 MC	EH_AL_2D_#1	М	2690	mg/kg	5.00	8.2	[B] < 5.0	[B] 7.1	[B] 14	< 5.0	19	< 5.0
Total Aliphatic EPH >C10-C40 MC	EH_AL_2D_#1	N	2690	mg/kg	10.00	< 10	[B] < 10	[B] < 10	[B] 14	< 10	19	< 10
Aromatic VPH >C5-C7	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	[B] < 0.05	[B] < 0.05	[B] < 0.05	< 0.05	< 0.05	< 0.05
Aromatic VPH >C7-C8	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	[B] < 0.05	[B] < 0.05	[B] < 0.05	< 0.05	< 0.05	< 0.05
Aromatic VPH >C8-C10	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	[B] < 0.05	[B] < 0.05	[B] < 0.05	< 0.05	< 0.05	< 0.05
Total Aromatic VPH >C5-C10	HS_2D_AR	U	2780	mg/kg	0.25	< 0.25	[B] < 0.25	[B] < 0.25	[B] < 0.25	< 0.25	< 0.25	< 0.25

Client: Northwest Geotech		Chemtest Job No.:		24-02939	24-02939	24-02939	24-02939	24-02939	24-02939	24-02939		
Quotation No.:		(Chemte	est Sam	ple ID.:	1760594	1760595	1760596	1760597	1760598	1760599	1760600
Order No.:			Clie	nt Samp	le Ref.:	ES1	ES1	ES2	ES3	ES1	ES2	ES1
			Sa	ample Lo	ocation:	SBH07	SBH08	SBH09	SBH10	SBH14	SBH14	SBH16
				Sampl	e Type:	SOIL						
				Top De	pth (m):	0.50	0.50	1.00	2.00	0.50	1.00	0.50
				Date Sa	ampled:	19-Jan-2024	16-Jan-2024	16-Jan-2024	16-Jan-2024	23-Jan-2024	23-Jan-2024	23-Jan-2024
				Asbest	ios Lab:	COVENTRY						
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
Aromatic EPH >C10-C12 MC	EH_AR_2D_#1	U	2690	mg/kg	1.00	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
Aromatic EPH >C12-C16 MC	EH_AR_2D_#1	U	2690	mg/kg	1.00	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
Aromatic EPH >C16-C21 MC	EH_AR_2D_#1	U	2690	mg/kg	2.00	4.2	[B] 4.8	[B] 3.0	[B] 2.9	5.2	2.9	5.9
Aromatic EPH >C21-C35 MC	EH_AR_2D_#1	U	2690	mg/kg	2.00	3.5	[B] 2.8	[B] 5.6	[B] 6.6	2.2	7.3	3.0
Aromatic EPH >C35-C40 MC	EH_AR_2D_#1	N	2690	mg/kg	1.00	< 1.0	[B] < 1.0	[B] 1.2	[B] 1.1	< 1.0	1.2	< 1.0
Total Aromatic EPH >C10-C35 MC	EH_AR_2D_#1	U	2690	mg/kg	5.00	7.8	[B] 7.6	[B] 8.5	[B] 9.5	7.4	10	8.8
Total Aromatic EPH >C10-C40 MC	EH_AR_2D_#1	N	2690	mg/kg	10.00	< 10	[B] < 10	[B] < 10	[B] 11	< 10	11	< 10
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	0.50	< 0.50	[B] < 0.50	[B] < 0.50	[B] < 0.50	< 0.50	< 0.50	< 0.50
Total EPH >C10-C35 MC	EH_Total_2D_#1	U	2690	mg/kg	10.00	16	[B] 10	[B] 16	[B] 24	< 10	29	14
Total EPH >C10-C40 MC	EH_Total_2D_#1	N	2690	mg/kg	10.00	16	[B] 10	[B] 17	[B] 25	< 10	30	14
Organic Matter		М	2625	%	0.40	0.98	0.47	0.69	0.56	0.96	0.58	0.55
Naphthalene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's		М	2700	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Dichlorodifluoromethane		U	2760	µg/kg	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
Chloromethane		М	2760	µg/kg	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride		М	2760	µg/kg	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
Bromomethane		М	2760	µg/kg	20	< 20	[B] < 20	[B] < 20	[B] < 20	< 20	< 20	< 20
Chloroethane		U	2760	µg/kg	2.0	< 2.0	[B] < 2.0	[B] < 2.0	[B] < 2.0	< 2.0	< 2.0	< 2.0
Trichlorofluoromethane		М	2760	µg/kg	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene		М	2760	µg/kg	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
Dichloromethane		N	2760	µg/kg	50	< 50	[B] < 50	[B] < 50	[B] < 50	< 50	< 50	< 50
Trans 1,2-Dichloroethene		М	2760	µg/kg	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane		М	2760	µg/kg	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0

Client: Northwest Geotech			Che	mtest J	ob No.:	24-02939	24-02939	24-02939	24-02939	24-02939	24-02939	24-02939
Quotation No.:			Chemte	st Sam	ple ID.:	1760594	1760595	1760596	1760597	1760598	1760599	1760600
Order No.:			Clie	nt Samp	le Ref.:	ES1	ES1	ES2	ES3	ES1	ES2	ES1
			Sa	ample Lo	ocation:	SBH07	SBH08	SBH09	SBH10	SBH14	SBH14	SBH16
				Sampl	e Type:	SOIL						
				Top De	pth (m):	0.50	0.50	1.00	2.00	0.50	1.00	0.50
				Date Sa	ampled:	19-Jan-2024	16-Jan-2024	16-Jan-2024	16-Jan-2024	23-Jan-2024	23-Jan-2024	23-Jan-2024
				Asbest	os Lab:	COVENTRY						
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
cis 1,2-Dichloroethene		М	2760	µg/kg	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
Bromochloromethane		U	2760	µg/kg	5.0	< 5.0	[B] < 5.0	[B] < 5.0	[B] < 5.0	< 5.0	< 5.0	< 5.0
Trichloromethane		М	2760	µg/kg	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane		М	2760	µg/kg	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
Tetrachloromethane		М	2760	µg/kg	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene		U	2760	µg/kg	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
Benzene		М	2760	µg/kg	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane		M	2760	µg/kg	2.0	< 2.0	[B] < 2.0	[B] < 2.0	[B] < 2.0	< 2.0	< 2.0	< 2.0
Trichloroethene		N	2760	µg/kg	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane		М	2760	µg/kg	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
Dibromomethane		M	2760	µg/kg	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane		M	2760	µg/kg	5.0	< 5.0	[B] < 5.0	[B] < 5.0	[B] < 5.0	< 5.0	< 5.0	< 5.0
cis-1,3-Dichloropropene		N	2760	µg/kg	10	< 10	[B] < 10	[B] < 10	[B] < 10	< 10	< 10	< 10
		M	2760	µg/kg	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
I rans-1,3-Dichloropropene		N	2760	µg/kg	10	< 10	[B] < 10	[B] < 10	[B] < 10	< 10	< 10	< 10
1,1,2-I richloroethane		IVI	2760	µg/кд	10	< 10	[B] < 10	[B] < 10	[B] < 10	< 10	< 10	< 10
1 etrachioroethene		IM	2760	µg/kg	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
T,3-Dichloropropane			2760	µg/kg	2.0	< 2.0	[D] < 2.0	[D] < 2.0	[D] < 2.0	< 2.0	< 2.0	< 2.0
1.2 Dibromoethene			2760	µg/kg	50	< 10	[D] < 10	[D] < 10	[D] < 10	< 10	< 10	< 10
1,2-Dibioinoethane		IVI	2760	µg/kg	5.0	< 5.0	[B] < 3.0	[B] < 3.0	[B] < 5.0	< 5.0	< 5.0	< 5.0
		M	2760	µg/kg	1.0	< 2.0	[B] < 1.0	[B] < 2.0	[B] < 1.0	< 1.0	< 1.0	< 2.0
Fthylbenzene		M	2760	µg/kg	2.0	< 1.0	[B] < 2.0	[B] < 2.0	[B] < 2.0	< 1.0	< 1.0	< 1.0
m & p-Xylene		M	2760	ua/ka	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] 5 3	< 1.0	< 1.0	< 1.0
o-Xylene		M	2760	ua/ka	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] 2.6	< 1.0	< 1.0	< 1.0
Styrene		M	2760	ua/ka	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
Tribromomethane		U	2760	ua/ka	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene		M	2760	ua/ka	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
Bromobenzene		M	2760	µg/kg	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichloropropane		N	2760	µg/kg	50	< 50	[B] < 50	[B] < 50	[B] < 50	< 50	< 50	< 50
N-Propylbenzene		U	2760	µg/kg	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
2-Chlorotoluene		М	2760	µg/kg	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene		М	2760	µg/kg	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
4-Chlorotoluene		U	2760	µg/kg	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
Tert-Butylbenzene		U	2760	µg/kg	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene		М	2760	µg/kg	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
Sec-Butylbenzene		U	2760	µg/kg	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene		М	2760	µg/kg	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0

Client: Northwest Geotech			Che	mtest Jo	ob No.:	24-02939	24-02939	24-02939	24-02939	24-02939	24-02939	24-02939
Quotation No.:		(Chemte	est Sam	ple ID.:	1760594	1760595	1760596	1760597	1760598	1760599	1760600
Order No.:			Clie	nt Samp	le Ref.:	ES1	ES1	ES2	ES3	ES1	ES2	ES1
			Sa	ample Lo	ocation:	SBH07	SBH08	SBH09	SBH10	SBH14	SBH14	SBH16
				Sampl	e Type:	SOIL						
				Тор Dep	oth (m):	0.50	0.50	1.00	2.00	0.50	1.00	0.50
				Date Sa	ampled:	19-Jan-2024	16-Jan-2024	16-Jan-2024	16-Jan-2024	23-Jan-2024	23-Jan-2024	23-Jan-2024
				Asbest	os Lab:	COVENTRY						
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
4-Isopropyltoluene		U	2760	µg/kg	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene		М	2760	µg/kg	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
N-Butylbenzene		U	2760	µg/kg	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene		М	2760	µg/kg	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-Chloropropane		U	2760	µg/kg	50	< 50	[B] < 50	[B] < 50	[B] < 50	< 50	< 50	< 50
1,2,4-Trichlorobenzene		М	2760	µg/kg	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene		Ν	2760	µg/kg	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene		U	2760	µg/kg	2.0	< 2.0	[B] < 2.0	[B] < 2.0	[B] < 2.0	< 2.0	< 2.0	< 2.0
Methyl Tert-Butyl Ether		М	2760	µg/kg	1.0	< 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	< 1.0	< 1.0	< 1.0
PCB 28		U	2815	mg/kg	0.010			< 0.010				
PCB 52		U	2815	mg/kg	0.010			< 0.010				
PCB 101		U	2815	mg/kg	0.010			< 0.010				
PCB 118		U	2815	mg/kg	0.010			< 0.010				
PCB 153		U	2815	mg/kg	0.010			< 0.010				
PCB 138		U	2815	mg/kg	0.010			< 0.010				
PCB 180		U	2815	mg/kg	0.010			< 0.010				
Total PCBs (7 Congeners)		U	2815	mg/kg	0.10			< 0.10				
Total Phenols		М	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

Client: Northwest Geotech		Chemtest Job I				24-02939	24-02939	24-02939
Quotation No.:		(()	Chemte	est Sam	ple ID.:	1760601	1760602	1760603
Order No.:			Clie	nt Samp	le Ref.:	ES2	ES1	ES3
			Sa	ample Lo	ocation:	SBH17	SBH19	SBH19
				Sampl	e Type:	SOIL	SOIL	SOIL
				Top De	oth (m):	1.00	0.50	2.00
				Date Sa	ampled:	23-Jan-2024	23-Jan-2024	23-Jan-2024
				Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY
Determinand	HWOL Code	Accred.	SOP	Units	LOD			
АСМ Туре		U	2192		N/A	-	-	-
Asbestos Identification		U	2192		N/A	No Asbestos	No Asbestos	No Asbestos
Moisture		N	2030	%	0.020	24	24	11
Soil Colour		N	2000	70	N/A	Brown	Brown	Brown
			2010			Biomi	Stones and	Biotini
Other Material		N	2040		N/A	Stones	Roots	Stones
Soil Texture		N	2040		N/A	Clay	Clay	Clay
pH at 20C		М	2010		4.0	7.8	7.9	8.4
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010	< 0.010	< 0.010	0.011
Cyanide (Free)		М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50
Cyanide (Total)		М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50
Arsenic		М	2455	mg/kg	0.5	9.1	12	8.9
Cadmium		М	2455	mg/kg	0.10	0.49	0.73	0.64
Chromium		M	2455	mg/kg	0.5	42	45	39
Copper		М	2455	mg/kg	0.50	21	23	24
Mercury		М	2455	mg/kg	0.05	0.07	0.07	< 0.05
Nickel		М	2455	mg/kg	0.50	54	59	48
Lead		М	2455	mg/kg	0.50	20	22	22
Selenium		М	2455	mg/kg	0.25	1.3	1.3	1.5
Zinc		М	2455	mg/kg	0.50	77	85	110
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C7-C8	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C8 (Sum)	HS_2D_AL	N	2780	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Aliphatic VPH >C8-C10	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05
Total Aliphatic VPH >C5-C10	HS_2D_AL	U	2780	mg/kg	0.25	< 0.25	< 0.25	< 0.25
Aliphatic EPH >C10-C12 MC	EH_AL_2D_#1	М	2690	mg/kg	2.00	< 2.0	< 2.0	< 2.0
Aliphatic EPH >C12-C16 MC	EH_AL_2D_#1	М	2690	mg/kg	1.00	2.3	< 1.0	< 1.0
Aliphatic EPH >C16-C21 MC	EH_AL_2D_#1	М	2690	mg/kg	2.00	< 2.0	< 2.0	< 2.0
Aliphatic EPH >C21-C35 MC	EH_AL_2D_#1	М	2690	mg/kg	3.00	< 3.0	< 3.0	< 3.0
Aliphatic EPH >C35-C40 MC	EH_AL_2D_#1	N	2690	mg/kg	10.00	< 10	< 10	< 10
Total Aliphatic EPH >C10-C35 MC	EH_AL_2D_#1	M	2690	mg/kg	5.00	8.1	< 5.0	< 5.0
Total Aliphatic EPH >C10-C40 MC	EH_AL_2D_#1	Ν	2690	mg/kg	10.00	< 10	< 10	< 10
Aromatic VPH >C5-C7	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05
Aromatic VPH >C7-C8	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05
Aromatic VPH >C8-C10	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05
Total Aromatic VPH >C5-C10	HS 2D AR	U	2780	ma/ka	0.25	< 0.25	< 0.25	< 0.25

Client: Northwest Geotech		Chemt		ntest Job No.:		24-02939	24-02939	24-02939
Quotation No.:		Chemtest Sample ID.:				1760601	1760602	1760603
Order No.:			Client Sample Ref.:				ES1	ES3
			Sa	ample Lo	ocation:	SBH17	SBH19	SBH19
				Sample	e Type:	SOIL	SOIL	SOIL
				Top Dep	oth (m):	1.00	0.50	2.00
				Date Sa	ampled:	23-Jan-2024	23-Jan-2024	23-Jan-2024
				Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY
Determinand	HWOL Code	Accred.	SOP	Units	LOD			
Aromatic EPH >C10-C12 MC	EH_AR_2D_#1	U	2690	mg/kg	1.00	< 1.0	< 1.0	< 1.0
Aromatic EPH >C12-C16 MC	EH_AR_2D_#1	U	2690	mg/kg	1.00	< 1.0	< 1.0	< 1.0
Aromatic EPH >C16-C21 MC	EH_AR_2D_#1	U	2690	mg/kg	2.00	6.2	5.5	4.8
Aromatic EPH >C21-C35 MC	EH_AR_2D_#1	U	2690	mg/kg	2.00	3.0	< 2.0	3.5
Aromatic EPH >C35-C40 MC	EH AR 2D #1	N	2690	mg/kg	1.00	< 1.0	< 1.0	< 1.0
Total Aromatic EPH >C10-C35 MC	EH_AR_2D_#1	U	2690	mg/kg	5.00	9.2	6.4	8.4
Total Aromatic EPH >C10-C40 MC	EH_AR_2D_#1	N	2690	mg/kg	10.00	< 10	< 10	< 10
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	0.50	< 0.50	< 0.50	< 0.50
Total EPH >C10-C35 MC	EH_Total_2D_#1	U	2690	mg/kg	10.00	17	< 10	10
Total EPH >C10-C40 MC	EH_Total_2D_#1	N	2690	mg/kg	10.00	17	< 10	10
Organic Matter		М	2625	%	0.40	0.83	0.57	0.70
Naphthalene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Acenaphthene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Fluorene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Phenanthrene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Anthracene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Fluoranthene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Pyrene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Chrysene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's		М	2700	mg/kg	2.0	< 2.0	< 2.0	< 2.0
Dichlorodifluoromethane		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Chloromethane		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Bromomethane		М	2760	µg/kg	20	< 20	< 20	< 20
Chloroethane		U	2760	µg/kg	2.0	< 2.0	< 2.0	< 2.0
Trichlorofluoromethane		M	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene		M	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Dichloromethane		N	2760	µg/kg	50	< 50	< 50	< 50
Trans 1,2-Dichloroethene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1.1-Dichloroethane		М	2760	ua/ka	1.0	< 1.0	< 1.0	< 1.0

Client: Northwest Geotech			Che	mtest Jo	ob No.:	24-02939	24-02939	24-02939
Quotation No.:		(Chemtest Sample ID.:				1760602	1760603
Order No.:			Clie	nt Samp	le Ref.:	ES2	ES1	ES3
			Sa	ample Lo	ocation:	SBH17	SBH17 SBH19	
				Sampl	e Type:	SOIL	SOIL	SOIL
				Top Dep	oth (m):	1.00	0.50	2.00
				Date Sa	ampled:	23-Jan-2024	23-Jan-2024	23-Jan-2024
			Asbestos Lab:				COVENTRY	COVENTRY
Determinand	HWOL Code	Accred.	SOP	Units	LOD			
cis 1,2-Dichloroethene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Bromochloromethane		U	2760	µg/kg	5.0	< 5.0	< 5.0	< 5.0
Trichloromethane		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Tetrachloromethane		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Benzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane		М	2760	µg/kg	2.0	< 2.0	< 2.0	< 2.0
Trichloroethene		N	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Dibromomethane		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane		М	2760	µg/kg	5.0	< 5.0	< 5.0	< 5.0
cis-1,3-Dichloropropene		N	2760	µg/kg	10	< 10	< 10	< 10
Toluene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Trans-1,3-Dichloropropene		N	2760	µg/kg	10	< 10	< 10	< 10
1,1,2-Trichloroethane		М	2760	µg/kg	10	< 10	< 10	< 10
Tetrachloroethene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane		U	2760	µg/kg	2.0	< 2.0	< 2.0	< 2.0
Dibromochloromethane		U	2760	µg/kg	10	< 10	< 10	< 10
1,2-Dibromoethane		М	2760	µg/kg	5.0	< 5.0	< 5.0	< 5.0
Chlorobenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane		М	2760	µg/kg	2.0	< 2.0	< 2.0	< 2.0
Ethylbenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
o-Xylene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Styrene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Tribromomethane		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Bromobenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichloropropane		N	2760	µg/kg	50	< 50	< 50	< 50
N-Propylbenzene		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
2-Chlorotoluene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
4-Chlorotoluene		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Tert-Butylbenzene		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Sec-Butylbenzene		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1.3-Dichlorobenzene		M	2760	ua/ka	1.0	< 1.0	< 1.0	< 1.0

Client: Northwest Geotech			Che	mtest Jo	ob No.:	24-02939	24-02939	24-02939
Quotation No.:		(Chemte	est Sam	ple ID.:	1760601	1760602	1760603
Order No.:			Clie	nt Samp	le Ref.:	ES2	ES1	ES3
			Sample Location:				SBH19	SBH19
				Sampl	e Type:	SOIL	SOIL	SOIL
				Top De	pth (m):	1.00	0.50	2.00
				Date Sa	ampled:	23-Jan-2024	23-Jan-2024	23-Jan-2024
				Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY
Determinand	HWOL Code	Accred.	SOP	Units	LOD			
4-Isopropyltoluene		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
N-Butylbenzene		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-Chloropropane		U	2760	µg/kg	50	< 50	< 50	< 50
1,2,4-Trichlorobenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene		N	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene		U	2760	µg/kg	2.0	< 2.0	< 2.0	< 2.0
Methyl Tert-Butyl Ether		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
PCB 28		U	2815	mg/kg	0.010			
PCB 52		U	2815	mg/kg	0.010			
PCB 101		U	2815	mg/kg	0.010			
PCB 118		U	2815	mg/kg	0.010			
PCB 153		U	2815	mg/kg	0.010			
PCB 138		U	2815	mg/kg	0.010			
PCB 180		U	2815	mg/kg	0.010			
Total PCBs (7 Congeners)		U	2815	mg/kg	0.10			
Total Phenols		М	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1760595	ES1		SBH08	16-Jan-2024	В	Amber Glass 250ml
1760595	ES1		SBH08	16-Jan-2024	В	Amber Glass 60ml
1760595	ES1		SBH08	16-Jan-2024	В	Plastic Tub 500g
1760596	ES2		SBH09	16-Jan-2024	В	Amber Glass 250ml
1760596	ES2		SBH09	16-Jan-2024	В	Amber Glass 60ml
1760596	ES2		SBH09	16-Jan-2024	В	Plastic Tub 500g
1760597	ES3		SBH10	16-Jan-2024	В	Amber Glass 250ml
1760597	ES3		SBH10	16-Jan-2024	В	Amber Glass 60ml
1760597	ES3		SBH10	16-Jan-2024	В	Plastic Tub 500g

Test Methods

SOP	Title	Parameters included	Method summary	Water Accred.
2010	pH Value of Soils	pH at 20°C	pH Meter	
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.	
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930	
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES	
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry	
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.	
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.	
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.	
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.	
2690	EPH A/A Split	Aliphatics: >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C40 Aromatics: >C10–C12, >C12–C16, >C16– C21, >C21–C35, >C35–C40	Acetone/Heptane extraction / GCxGC FID detection	
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC- FID detection is non-selective and can be subject to interference from co-eluting compounds)	
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.	
2780	VPH A/A Split	Aliphatics: >C5–C6, >C6–C7,>C7–C8,>C8- C10 Aromatics: >C5–C7,>C7-C8,>C8–C10	Water extraction / Headspace GCxGC FID detection	
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS	
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1-Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.	

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"
- SOP Standard operating procedure
- LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

Water Sample Category Key for Accreditation

DW - Drinking Water GW - Ground Water LE - Land Leachate NA - Not Applicable PL - Prepared Leachate PW - Processed Water

Report Information

RE - Recreational Water SA - Saline Water SW - Surface Water TE - Treated Effluent TS - Treated Sewage UL - Unspecified Liquid

Clean Up Codes

NC - No Clean Up MC - Mathematical Clean Up FC - Florisil Clean Up

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	24-02760-1		
Initial Date of Issue:	15-Feb-2024		
Re-Issue Details:			
Client	Northwest Geotech		
Client Address:	Unit 9 Northwest Business Complex Skeoge Industrial Estate Derry IRELAND		
Contact(s):	Paul McNamara		
Project	23-0092 Cavan RS		
Quotation No.:		Date Received:	31-Jan-2024
Order No.:		Date Instructed:	31-Jan-2024
No. of Samples:	8		
Turnaround (Wkdays):	12	Results Due:	15-Feb-2024
Date Approved:	06-Feb-2024		
Approved By:			
and			

Details:

2183

Final Report

Stuart Henderson, Technical Manager

For details about application of accreditation to specific matrix types, please refer to the Table at the back of this report

Client: Northwest Geotech			Che	mtest J	ob No.:	24-02760	24-02760	24-02760	24-02760	24-02760	24-02760	24-02760
Quotation No.:			Chemte	est Sam	ple ID.:	1760077	1760078	1760079	1760080	1760081	1760082	1760083
Order No.:			Clie	nt Samp	le Ref.:	ES2	ES1	ES2	ES1	ES3	ES2	ES2
			Sa	ample Lo	ocation:	SBH21	SBH22	SBH22	SBH23	SBH23	SBH24	SBH25
				Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De	oth (m):	1.0	0.5	1.0	0.5	2.0	1.0	1.0
				Date Sa	ampled:	25-Jan-2024	25-Jan-2024	25-Jan-2024	25-Jan-2024	25-Jan-2024	25-Jan-2024	25-Jan-2024
				Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
АСМ Туре		U	2192		N/A	-	-	-	-	-	-	-
Ashestos Identification		<u>п</u>	2192		N/A	No Asbestos	No Asbestos	No Asbestos	No Asbestos	No Asbestos	No Asbestos	No Asbestos
		0	2152			Detected	Detected	Detected	Detected	Detected	Detected	Detected
Moisture		N	2030	%	0.020	11	27	13	21	17	12	12
Soil Colour		N	2040		N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown
Other Material		N	2040		N/A	Stones	Stones and Roots	Stones	Stones and Roots	Stones	Stones	Stones
Soil Texture		N	2040		N/A	Clav	Clav	Clav	Clav	Clav	Clav	Clav
pH at 20C		М	2010		4.0	8.7	7.3	8.4	7.1	8.5	8.4	8.4
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Cyanide (Free)		М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Cyanide (Total)		М	2300	mg/kg	0.50	< 0.50	0.60	0.80	0.60	< 0.50	< 0.50	< 0.50
Arsenic		М	2455	mg/kg	0.5	9.1	3.1	5.5	8.3	6.6	7.5	10
Cadmium		М	2455	mg/kg	0.10	0.37	0.30	0.20	0.24	0.28	0.26	0.31
Chromium		М	2455	mg/kg	0.5	41	37	25	41	43	34	35
Copper		М	2455	mg/kg	0.50	24	14	14	14	29	19	23
Mercury		М	2455	mg/kg	0.05	< 0.05	0.08	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel		М	2455	mg/kg	0.50	52	30	31	48	58	45	49
Lead		М	2455	mg/kg	0.50	20	19	12	19	21	16	19
Selenium		М	2455	mg/kg	0.25	1.4	1.1	0.60	0.95	1.0	1.1	1.2
Zinc		М	2455	mg/kg	0.50	82	79	51	61	83	77	75
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C7-C8	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C8 (Sum)	HS_2D_AL	N	2780	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic VPH >C8-C10	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total Aliphatic VPH >C5-C10	HS_2D_AL	U	2780	mg/kg	0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Aliphatic EPH >C10-C12 MC	EH_AL_2D_#1	М	2690	mg/kg	2.00	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aliphatic EPH >C12-C16 MC	EH_AL_2D_#1	М	2690	mg/kg	1.00	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic EPH >C16-C21 MC	EH_AL_2D_#1	M	2690	mg/kg	2.00	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aliphatic EPH >C21-C35 MC	EH_AL_2D_#1	M	2690	mg/kg	3.00	< 3.0	8.4	< 3.0	4.1	< 3.0	< 3.0	< 3.0
Aliphatic EPH >C35-C40 MC	EH_AL_2D_#1	N	2690	mg/kg	10.00	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Total Aliphatic EPH >C10-C35 MC	EH_AL_2D_#1	M	2690	mg/kg	5.00	< 5.0	8.8	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Aliphatic EPH >C10-C40 MC	EH_AL_2D_#1	N	2690	mg/kg	10.00	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Aromatic VPH >C5-C7	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic VPH >C7-C8	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic VPH >C8-C10	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total Aromatic VPH >C5-C10	HS_2D_AR	U	2780	mg/kg	0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
<u> Results - Soil</u>

Client: Northwest Geotech			Che	mtest J	ob No.:	24-02760	24-02760	24-02760	24-02760	24-02760	24-02760	24-02760
Quotation No.:		(Chemte	est Sam	ple ID.:	1760077	1760078	1760079	1760080	1760081	1760082	1760083
Order No.:			Clie	nt Samp	le Ref.:	ES2	ES1	ES2	ES1	ES3	ES2	ES2
			Sa	ample Lo	ocation:	SBH21	SBH22	SBH22	SBH23	SBH23	SBH24	SBH25
				Sampl	e Type:	SOIL						
				Top De	pth (m):	1.0	0.5	1.0	0.5	2.0	1.0	1.0
				Date Sa	ampled:	25-Jan-2024						
				Asbest	os Lab:	COVENTRY						
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
Aromatic EPH >C10-C12 MC	EH_AR_2D_#1	U	2690	mg/kg	1.00	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic EPH >C12-C16 MC	EH_AR_2D_#1	U	2690	mg/kg	1.00	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic EPH >C16-C21 MC	EH_AR_2D_#1	U	2690	mg/kg	2.00	< 2.0	< 2.0	2.3	< 2.0	< 2.0	< 2.0	2.2
Aromatic EPH >C21-C35 MC	EH_AR_2D_#1	U	2690	mg/kg	2.00	< 2.0	< 2.0	< 2.0	7.9	< 2.0	< 2.0	< 2.0
Aromatic EPH >C35-C40 MC	EH_AR_2D_#1	N	2690	mg/kg	1.00	< 1.0	< 1.0	1.1	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic EPH >C10-C35 MC	EH_AR_2D_#1	U	2690	mg/kg	5.00	< 5.0	< 5.0	< 5.0	8.5	< 5.0	< 5.0	< 5.0
Total Aromatic EPH >C10-C40 MC	EH_AR_2D_#1	N	2690	mg/kg	10.00	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Total EPH >C10-C35 MC	EH_Total_2D_#1	U	2690	mg/kg	10.00	< 10	12	< 10	13	< 10	< 10	< 10
Total EPH >C10-C40 MC	EH_Total_2D_#1	N	2690	mg/kg	10.00	< 10	12	< 10	13	< 10	< 10	< 10
Organic Matter		М	2625	%	0.40	0.85	1.9	3.2	0.98	1.1	1.4	1.1
Naphthalene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene		М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's		М	2700	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Dichlorodifluoromethane		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloromethane		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane		М	2760	µg/kg	20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Chloroethane		U	2760	µg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Trichlorofluoromethane		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dichloromethane		Ν	2760	µg/kg	50	< 50	< 50	< 50	< 50	< 50	< 50	< 50
Trans 1,2-Dichloroethene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

<u> Results - Soil</u>

Client: Northwest Geotech			Chei	mtest J	ob No.:	24-02760	24-02760	24-02760	24-02760	24-02760	24-02760	24-02760
Quotation No.:		(Chemte	st Sam	ple ID.:	1760077	1760078	1760079	1760080	1760081	1760082	1760083
Order No.:			Clier	nt Samp	le Ref.:	ES2	ES1	ES2	ES1	ES3	ES2	ES2
			Sa	ample Lo	ocation:	SBH21	SBH22	SBH22	SBH23	SBH23	SBH24	SBH25
				Sampl	e Type:	SOIL						
				Top De	pth (m):	1.0	0.5	1.0	0.5	2.0	1.0	1.0
				Date Sa	ampled:	25-Jan-2024						
				Asbest	os Lab:	COVENTRY						
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
cis 1,2-Dichloroethene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromochloromethane		U	2760	µg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Trichloromethane		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloromethane		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Benzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane		М	2760	µg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Trichloroethene		N	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromomethane		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane		М	2760	µg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
cis-1,3-Dichloropropene		N	2760	µg/kg	10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Toluene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,3-Dichloropropene		N	2760	µg/kg	10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
1,1,2-Trichloroethane		М	2760	µg/kg	10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Tetrachloroethene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane		U	2760	µg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Dibromochloromethane		U	2760	µg/kg	10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
1,2-Dibromoethane		М	2760	µg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chlorobenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane		М	2760	µg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Ethylbenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Styrene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tribromomethane		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromobenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichloropropane		N	2760	µg/kg	50	< 50	< 50	< 50	< 50	< 50	< 50	< 50
N-Propylbenzene		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Chlorotoluene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Chlorotoluene		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tert-Butylbenzene		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Sec-Butylbenzene		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene		M	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

<u> Results - Soil</u>

Client: Northwest Geotech			Cher	mtest Jo	ob No.:	24-02760	24-02760	24-02760	24-02760	24-02760	24-02760	24-02760
Quotation No.:		(Chemte	st Sam	ple ID.:	1760077	1760078	1760079	1760080	1760081	1760082	1760083
Order No.:			Clier	nt Samp	le Ref.:	ES2	ES1	ES2	ES1	ES3	ES2	ES2
			Sample Location: SBF		SBH21	SBH22	SBH22	SBH23	SBH23	SBH24	SBH25	
				Sampl	e Type:	SOIL						
				Тор Dep	oth (m):	1.0	0.5	1.0	0.5	2.0	1.0	1.0
				Date Sa	ampled:	25-Jan-2024						
				Asbest	os Lab:	COVENTRY						
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
4-Isopropyltoluene		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
N-Butylbenzene		U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-Chloropropane		U	2760	µg/kg	50	< 50	< 50	< 50	< 50	< 50	< 50	< 50
1,2,4-Trichlorobenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene		N	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene		U	2760	µg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Methyl Tert-Butyl Ether		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Phenols		М	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

Client: Northwest Geotech			24-02760			
Quotation No.:		(1760084			
Order No.:			ES3			
			SBH25			
				Sampl	e Type:	SOIL
				Top Dep	oth (m):	1.9
				Date Sa	ampled:	25-Jan-2024
				Asbest	os Lab:	COVENTRY
Determinand	HWOL Code	Accred.	SOP	Units	LOD	
АСМ Туре		U	2192		N/A	-
Asbestos Identification		U	2192		N/A	No Asbestos Detected
Moisture		N	2030	%	0.020	23
Soil Colour		N	2040		N/A	Brown
Other Material		Ν	2040		N/A	Stones
Soil Texture		N	2040		N/A	Clay
pH at 20C		М	2010		4.0	8.2
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010	< 0.010
Cyanide (Free)		М	2300	mg/kg	0.50	< 0.50
Cyanide (Total)		М	2300	mg/kg	0.50	< 0.50
Arsenic		М	2455	mg/kg	0.5	5.4
Cadmium		М	2455	mg/kg	0.10	0.39
Chromium		М	2455	mg/kg	0.5	37
Copper		М	2455	mg/kg	0.50	23
Mercury		М	2455	mg/kg	0.05	< 0.05
Nickel		М	2455	mg/kg	0.50	50
Lead		М	2455	mg/kg	0.50	18
Selenium		М	2455	mg/kg	0.25	0.92
Zinc		М	2455	mg/kg	0.50	75
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05
Aliphatic VPH >C7-C8	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05
Aliphatic VPH >C6-C8 (Sum)	HS_2D_AL	N	2780	mg/kg	0.10	< 0.10
Aliphatic VPH >C8-C10	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05
Total Aliphatic VPH >C5-C10	HS_2D_AL	U	2780	mg/kg	0.25	< 0.25
Aliphatic EPH >C10-C12 MC	EH_AL_2D_#1	М	2690	mg/kg	2.00	< 2.0
Aliphatic EPH >C12-C16 MC	EH_AL_2D_#1	М	2690	mg/kg	1.00	< 1.0
Aliphatic EPH >C16-C21 MC	EH_AL_2D_#1	М	2690	mg/kg	2.00	< 2.0
Aliphatic EPH >C21-C35 MC	EH_AL_2D_#1	М	2690	mg/kg	3.00	< 3.0
Aliphatic EPH >C35-C40 MC	EH_AL_2D_#1	N	2690	mg/kg	10.00	< 10
Total Aliphatic EPH >C10-C35 MC	EH_AL_2D_#1	М	2690	mg/kg	5.00	< 5.0
Total Aliphatic EPH >C10-C40 MC	EH_AL_2D_#1	N	2690	mg/kg	10.00	< 10
Aromatic VPH >C5-C7	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05
Aromatic VPH >C7-C8	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05
Aromatic VPH >C8-C10	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05
Total Aromatic VPH >C5-C10	HS 2D AR	U	2780	mg/kg	0.25	< 0.25

Client: Northwest Geotech			ob No.:	24-02760		
Quotation No.:		(1760084			
Order No.:			ES3			
			Sa	ample Lo	ocation:	SBH25
				Sample	e Type:	SOIL
				Тор Dep	oth (m):	1.9
				Date Sa	ampled:	25-Jan-2024
				Asbest	os Lab:	COVENTRY
Determinand	HWOL Code	Accred.	SOP	Units	LOD	
Aromatic EPH >C10-C12 MC	EH_AR_2D_#1	U	2690	mg/kg	1.00	< 1.0
Aromatic EPH >C12-C16 MC	EH_AR_2D_#1	U	2690	mg/kg	1.00	< 1.0
Aromatic EPH >C16-C21 MC	EH_AR_2D_#1	U	2690	mg/kg	2.00	2.1
Aromatic EPH >C21-C35 MC	EH_AR_2D_#1	U	2690	mg/kg	2.00	7.1
Aromatic EPH >C35-C40 MC	EH_AR_2D_#1	Ν	2690	mg/kg	1.00	< 1.0
Total Aromatic EPH >C10-C35 MC	EH_AR_2D_#1	U	2690	mg/kg	5.00	9.2
Total Aromatic EPH >C10-C40 MC	EH_AR_2D_#1	Ν	2690	mg/kg	10.00	< 10
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	0.50	< 0.50
Total EPH >C10-C35 MC	EH_Total_2D_#1	U	2690	mg/kg	10.00	< 10
Total EPH >C10-C40 MC	EH_Total_2D_#1	Ν	2690	mg/kg	10.00	< 10
Organic Matter		М	2625	%	0.40	1.0
Naphthalene		М	2700	mg/kg	0.10	< 0.10
Acenaphthylene		М	2700	mg/kg	0.10	< 0.10
Acenaphthene		М	2700	mg/kg	0.10	< 0.10
Fluorene		М	2700	mg/kg	0.10	< 0.10
Phenanthrene		М	2700	mg/kg	0.10	< 0.10
Anthracene		М	2700	mg/kg	0.10	< 0.10
Fluoranthene		М	2700	mg/kg	0.10	< 0.10
Pyrene		М	2700	mg/kg	0.10	< 0.10
Benzo[a]anthracene		М	2700	mg/kg	0.10	< 0.10
Chrysene		М	2700	mg/kg	0.10	< 0.10
Benzo[b]fluoranthene		М	2700	mg/kg	0.10	< 0.10
Benzo[k]fluoranthene		М	2700	mg/kg	0.10	< 0.10
Benzo[a]pyrene		М	2700	mg/kg	0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene		М	2700	mg/kg	0.10	< 0.10
Dibenz(a,h)Anthracene		М	2700	mg/kg	0.10	< 0.10
Benzo[g,h,i]perylene		М	2700	mg/kg	0.10	< 0.10
Total Of 16 PAH's		М	2700	mg/kg	2.0	< 2.0
Dichlorodifluoromethane		U	2760	µg/kg	1.0	< 1.0
Chloromethane		М	2760	µg/kg	1.0	< 1.0
Vinyl Chloride		М	2760	µg/kg	1.0	< 1.0
Bromomethane		М	2760	µg/kg	20	< 20
Chloroethane		U	2760	µg/kg	2.0	< 2.0
Trichlorofluoromethane		М	2760	µg/kg	1.0	< 1.0
1,1-Dichloroethene		Μ	2760	µg/kg	1.0	< 1.0
Dichloromethane		Ν	2760	µg/kg	50	< 50
Trans 1,2-Dichloroethene		М	2760	µg/kg	1.0	< 1.0
1,1-Dichloroethane		М	2760	µg/kg	1.0	< 1.0

Client: Northwest Geotech			Chemtest Job No.:						
Quotation No.:		(1760084						
Order No.:			Client Sample Ref.						
			Sa	ample Lo	ocation:	SBH25			
				Sampl	e Type:	SOIL			
				Тор Dep	oth (m):	1.9			
				Date Sa	ampled:	25-Jan-2024			
				Asbest	os Lab:	COVENTRY			
Determinand	HWOL Code	Accred.	SOP	Units	LOD				
cis 1,2-Dichloroethene		М	2760	µg/kg	1.0	< 1.0			
Bromochloromethane		U	2760	µg/kg	5.0	< 5.0			
Trichloromethane		М	2760	µg/kg	1.0	< 1.0			
1,1,1-Trichloroethane		M	2760	µg/kg	1.0	< 1.0			
Tetrachloromethane		M	2760	µg/kg	1.0	< 1.0			
1,1-Dichloropropene		U	2760	µg/kg	1.0	< 1.0			
Benzene		М	2760	µg/kg	1.0	< 1.0			
1,2-Dichloroethane		М	2760	µg/kg	2.0	< 2.0			
Trichloroethene		N	2760	µg/kg	1.0	< 1.0			
1,2-Dichloropropane		М	2760	µg/kg	1.0	< 1.0			
Dibromomethane		М	2760	µg/kg	1.0	< 1.0			
Bromodichloromethane		М	2760	µg/kg	5.0	< 5.0			
cis-1,3-Dichloropropene		N	2760	µg/kg	10	< 10			
Toluene		М	2760	µg/kg	1.0	< 1.0			
Trans-1,3-Dichloropropene		N	2760	µg/kg	10	< 10			
1,1,2-Trichloroethane		М	2760	µg/kg	10	< 10			
Tetrachloroethene		М	2760	µg/kg	1.0	< 1.0			
1,3-Dichloropropane		U	2760	µg/kg	2.0	< 2.0			
Dibromochloromethane		U	2760	µg/kg	10	< 10			
1,2-Dibromoethane		М	2760	µg/kg	5.0	< 5.0			
Chlorobenzene		М	2760	µg/kg	1.0	< 1.0			
1,1,1,2-Tetrachloroethane		М	2760	µg/kg	2.0	< 2.0			
Ethylbenzene		М	2760	µg/kg	1.0	< 1.0			
m & p-Xylene		М	2760	µg/kg	1.0	< 1.0			
o-Xylene		М	2760	µg/kg	1.0	< 1.0			
Styrene		М	2760	µg/kg	1.0	< 1.0			
Tribromomethane		U	2760	µg/kg	1.0	< 1.0			
Isopropylbenzene		М	2760	µg/kg	1.0	< 1.0			
Bromobenzene		М	2760	µg/kg	1.0	< 1.0			
1,2,3-Trichloropropane		N	2760	µg/kg	50	< 50			
N-Propylbenzene		U	2760	µg/kg	1.0	< 1.0			
2-Chlorotoluene		М	2760	µg/kg	1.0	< 1.0			
1,3,5-Trimethylbenzene		М	2760	µg/kg	1.0	< 1.0			
4-Chlorotoluene		U	2760	µg/kg	1.0	< 1.0			
Tert-Butylbenzene		U	2760	µg/kg	1.0	< 1.0			
1,2,4-Trimethylbenzene		М	2760	µg/kg	1.0	< 1.0			
Sec-Butylbenzene		U	2760	µg/kg	1.0	< 1.0			
1,3-Dichlorobenzene		М	2760	µg/kg	1.0	< 1.0			

Client: Northwest Geotech			ob No.:	24-02760				
Quotation No.:		(Chemte	est Sam	ple ID.:	1760084		
Order No.:			Clie	nt Samp	le Ref.:	ES3		
			Sa	ample Lo	ocation:	SBH25		
			Sample Type					
			Top Depth (m):					
			Date Sampled					
			COVENTRY					
Determinand	HWOL Code	Accred.	SOP	Units	LOD			
4-Isopropyltoluene		U	2760	µg/kg	1.0	< 1.0		
1,4-Dichlorobenzene		М	2760	µg/kg	1.0	< 1.0		
N-Butylbenzene		U	2760	µg/kg	1.0	< 1.0		
1,2-Dichlorobenzene		М	2760	µg/kg	1.0	< 1.0		
1,2-Dibromo-3-Chloropropane		U	2760	µg/kg	50	< 50		
1,2,4-Trichlorobenzene		М	2760	µg/kg	1.0	< 1.0		
Hexachlorobutadiene		N	2760	µg/kg	1.0	< 1.0		
1,2,3-Trichlorobenzene		U	2760	µg/kg	2.0	< 2.0		
Methyl Tert-Butyl Ether		М	2760	µg/kg	1.0	< 1.0		
Total Phenols		М	2920	ma/ka	0.10	< 0.10		

Test Methods

SOP	Title	Parameters included	Method summary	Water Accred.
2010	pH Value of Soils	pH at 20°C	pH Meter	
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.	
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930	
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES	
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry	
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.	
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.	
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.	
2690	EPH A/A Split	Aliphatics: >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35– C40 Aromatics: >C10–C12, >C12–C16, >C16– C21, >C21–C35, >C35– C40	Acetone/Heptane extraction / GCxGC FID detection	
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC- FID detection is non-selective and can be subject to interference from co-eluting compounds)	
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.	
2780	VPH A/A Split	Aliphatics: >C5–C6, >C6–C7,>C7–C8,>C8- C10 Aromatics: >C5–C7,>C7-C8,>C8–C10	Water extraction / Headspace GCxGC FID detection	
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1-Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.	

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"
- SOP Standard operating procedure
- LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

Water Sample Category Key for Accreditation

DW - Drinking Water GW - Ground Water LE - Land Leachate NA - Not Applicable PL - Prepared Leachate PW - Processed Water

Report Information

RE - Recreational Water SA - Saline Water SW - Surface Water TE - Treated Effluent TS - Treated Sewage UL - Unspecified Liquid

Clean Up Codes

NC - No Clean Up MC - Mathematical Clean Up FC - Florisil Clean Up

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

APPENDIX F: Groundwater Laboratory Results

🔅 eurofins

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	24-04393-1		
Initial Date of Issue:	27-Feb-2024		
Re-Issue Details:			
Client	Northwest Geotech		
Client Address:	Unit 9 Northwest Business Complex Skeoge Industrial Estate Derry IRELAND		
Contact(s):	Paul McNamara		
Project	23-0092		
Quotation No.:		Date Received:	14-Feb-2024
Order No.:		Date Instructed:	14-Feb-2024
No. of Samples:	10		
Turnaround (Wkdays):	10	Results Due:	27-Feb-2024
Date Approved:	21-Feb-2024		
Approved By:			
and			

Details:

2183

Final Report

Stuart Henderson, Technical Manager

For details about application of accreditation to specific matrix types, please refer to the Table at the back of this report

Quotation No.: Chemtest Sample ID.: 1766356 1766357 1766358 1766359 1766360 1766361 1766362 Sample Type: Sample Location: SBH2 SBH7 SBH9 SBH12 SBH16 SBH17 SBH16 SBH17 SBH16 SBH17 SBH16 SBH17 SBH16 SBH17 SB172 S127 S127 <
Image: Note of the state of the s
Image: Note:
Image: Notation of the synthesis o
Image: constraint of the constr
DeterminandHWOL CodeAccred.SOPUnitsLODImage: constraint of the second s
pH at 20CU10104.07.68.27.67.87.88.27.7Electrical Conductivity at 25CU1020 μ S/cm1.0770360830560570710700Total Dissolved SolidsN1020mg/l1.0500240540360370460460ColourN1050mg/l1.0<1.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
Total Dissolved Solids N 1020 mg/l 1.0 500 240 540 360 370 460 460 Colour N 1050 Hazen unit 1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0
ColourN 1050 Hazen unit 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0
Odour N 1070 N/A None No
Biochemical Oxygen DemandN1090mg O2/l4.0 $[B] < 4.0$ $[B]$
Chemical Oxygen Demand U 1100 mg O2/l 10 12 < 10 15 12 < 10 15 16 Alkalinity (Total) U 120 mg/l 10 230 170 220 170 170 190 200 Chloride U 120 mg/l 1.0 16 25 16 16 14 28 20 Ammoniacal Nitrogen U 120 mg/l 0.050 0.25 0.19 0.17 0.23 0.24 0.28 0.44 Nitrite as NO2 U 1220 mg/l 0.020 0.083 0.054 0.078 0.13 0.11 0.093 0.042 Nitrate as NO3 U 1220 mg/l 0.50 < 0.50
Alkalinity (Total) U 120 mg/l 10 230 170 220 170 170 190 200 Chloride U 1220 mg/l 1.0 16 25 16 16 14 28 20 Ammoniacal Nitrogen U 1220 mg/l 0.050 0.25 0.19 0.17 0.23 0.24 0.28 0.44 Nitrite as NO2 U 1220 mg/l 0.020 0.083 0.054 0.078 0.13 0.11 0.093 0.042 Nitrate as NO3 U 1220 mg/l 0.50 < 0.50
Chloride U 120 mg/l 1.0 16 25 16 16 14 28 20 Ammoniacal Nitrogen U 1220 mg/l 0.050 0.25 0.19 0.17 0.23 0.24 0.28 0.44 Nitrite as NO2 U 1220 mg/l 0.020 0.083 0.054 0.078 0.13 0.11 0.093 0.042 Nitrate as NO3 U 1220 mg/l 0.50 <0.50
Ammoniacal Nitrogen U 1220 mg/l 0.050 0.25 0.19 0.17 0.23 0.24 0.28 0.44 Nitrite as NO2 U 1220 mg/l 0.020 0.083 0.054 0.078 0.13 0.11 0.093 0.042 Nitrate as NO3 U 1220 mg/l 0.50 <0.50
Nitrite as NO2 U 1220 mg/l 0.020 0.083 0.054 0.078 0.13 0.11 0.093 0.042 Nitrate as NO3 U 1220 mg/l 0.50 <0.50
Nitrate as NO3 U 1220 mg/l 0.50 < 0.50 1.8 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20
Sulphate U 120 mg/l 1.0 71 15 71 21 20 130 120
Cyanide (Total) U 1300 mg/l 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.
Cyanide (Free) U 1300 mg/l 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.0
Calcium (Dissolved) U 1455 mg/l 2.00 190 59 180 120 130 120 120
Potassium (Dissolved) U 1455 mg/l 0.50 1.8 1.8 1.8 0.87 0.74 2.3 2.3
Magnesium (Dissolved) U 1455 mg/l 0.20 14 8.5 14 7.5 7.6 5.9 6.0
Sodium (Dissolved) U 1455 mg/l 1.50 11 5.3 11 9.3 8.7 43 44
Total Hardness as CaCO3 U 1270 mg/l 15 530 180 510 340 350 330 340
Arsenic (Dissolved) U 1455 µg/l 0.20 0.55 0.27 0.43 0.28 < 0.20 0.31 0.31
Boron (Dissolved) U 1455 µg/l 10.0 31 11 30 21 21 22 23
Barium (Dissolved) U 1455 µg/l 5.00 160 24 150 68 72 86 84
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Childmidin (Dissolved) U 1435 $\mu g/l$ 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 1.1 1.2 Conner (Dissolved) U 1455 $\mu g/l$ 0.50 < 0.50
$\begin{array}{c} \text{Copper (Dissolved)} \\ \hline \ \ \text{Copper (Dissolved)} \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Mangapase (Dissolved)
Nickel (Dissolved) $1405 \mu g/1 0.50 310 3.5 100 0.55 20 150 170 170 170 170 170 170 170 170 170 17$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Vanadium (Dissolved) U 1455 $\mu g/l$ 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50
Zinc (Dissolved) U 1455 ug/ 2.5 15 9.2 < 2.5 2.6 3.1 13 10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Low-Level Chromium (Hexavalent) U 1495 ug/l 0.10 0.10 0.83 < 0.10 < 0.10 < 0.10 0.31 0.38
Chromium (Trivalent) LL N 1455 $\mu g/l$ 1.00 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 </td
Total Organic Carbon U 1610 mg/l 2.0 5.7 3.9 5.4 3.9 3.6 5.8 5.9

Client: Northwest Geotech			Ch	emtest J	ob No.:	24-04393	24-04393	24-04393	24-04393	24-04393	24-04393	24-04393
Quotation No.:			Chem	test Sam	ple ID.:	1766356	1766357	1766358	1766359	1766360	1766361	1766362
			5	Sample L	ocation:	SBH2	SBH7	SBH9	SBH12	SBH16	SBH19	SBH20
				Sampl	e Type:	WATER						
			S	ample Su	b Type:	Ground Water						
				Date Sa	ampled:	12-Feb-2024						
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
Aliphatic TPH >C5-C6	EH_2D_AL_#1	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C6-C8	EH_2D_AL_#1	Ν	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C8-C10	EH_2D_AL_#1	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C10-C12	EH_2D_AL_#1	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C12-C16	EH_2D_AL_#1	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C16-C21	EH_2D_AL_#1	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C21-C35	EH_2D_AL_#1	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C35-C44	EH_2D_AL_#1	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Aliphatic Hydrocarbons	EH_2D_AL_#1	N	1675	µg/l	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	EH_2D_AR_#1	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C7-C8	EH_2D_AR_#1	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C8-C10	EH_2D_AR_#1	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C10-C12	EH_2D_AR_#1	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C12-C16	EH_2D_AR_#1	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C16-C21	EH_2D_AR_#1	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C21-C35	EH_2D_AR_#1	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C35-C44	EH_2D_AR_#1	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Aromatic Hydrocarbons	EH_2D_AR_#1	N	1675	µg/l	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	EH_2D_Total_#1	N	1675	µg/l	10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Dichlorodifluoromethane		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloromethane		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride		N	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane		U	1760	µg/l	5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Chloroethane		U	1760	µg/l	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Trichlorofluoromethane		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans 1,2-Dichloroethene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
cis 1,2-Dichloroethene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromochloromethane		U	1760	µg/l	5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Trichloromethane		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloromethane		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Benzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane		U	1760	µg/l	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Trichloroethene		N	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromomethane		U	1760	µg/l	10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Bromodichloromethane		U	1760	µg/l	5	< 5	< 5	< 5	< 5	< 5	< 5	< 5

Client: Northwest Geotech			Ch	emtest J	ob No.:	24-04393	24-04393	24-04393	24-04393	24-04393	24-04393	24-04393
Quotation No.:			Chem	test Sam	ple ID.:	1766356	1766357	1766358	1766359	1766360	1766361	1766362
			5	Sample L	ocation:	SBH2	SBH7	SBH9	SBH12	SBH16	SBH19	SBH20
				Sampl	e Type:	WATER						
			S	ample Su	b Type:	Ground Water						
				Date Sa	ampled:	12-Feb-2024						
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
cis-1,3-Dichloropropene		Ν	1760	µg/l	10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Toluene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,3-Dichloropropene		Ν	1760	µg/l	10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
1,1,2-Trichloroethane		U	1760	µg/l	10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Tetrachloroethene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane		U	1760	µg/l	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Dibromochloromethane		U	1760	µg/l	10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
1,2-Dibromoethane		U	1760	µg/l	5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Chlorobenzene		Ν	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane		U	1760	µg/l	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Ethylbenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Styrene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tribromomethane		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromobenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichloropropane		Ν	1760	µg/l	50	< 50	< 50	< 50	< 50	< 50	< 50	< 50
N-Propylbenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Chlorotoluene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Chlorotoluene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tert-Butylbenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Sec-Butylbenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene		N	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Isopropyltoluene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
N-Butylbenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-Chloropropane		U	1760	µg/l	50	< 50	< 50	< 50	< 50	< 50	< 50	< 50
1,2,4-Trichlorobenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene		U	1760	µg/l	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Methyl Tert-Butyl Ether		N	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Surfactants as MBAS		N	1770	mg/l	0.020	< 0.020	0.062	0.10	0.029	0.069	0.10	< 0.020
Naphthalene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

Client: Northwest Geotech			Ch	emtest J	ob No.:	24-04393	24-04393	24-04393	24-04393	24-04393	24-04393	24-04393
Quotation No.:			Chem	test Sam	ple ID.:	1766356	1766357	1766358	1766359	1766360	1766361	1766362
				Sample Lo	ocation:	SBH2	SBH7	SBH9	SBH12	SBH16	SBH19	SBH20
				Sampl	e Type:	WATER	WATER	WATER	WATER	WATER	WATER	WATER
			Sample Sub Type: G		Ground Water							
			Date Sampled: 1		12-Feb-2024							
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
Phenanthrene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's		U	1800	µg/l	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Total Phenols		U	1920	mg/l	0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030

Client: Northwest Geotech		Chemtest Job No.:			24-04393	24-04393	24-04393	
Quotation No.:			Chem	test Sam	ple ID.:	1766363	1766364	1766365
				Sample Lo	ocation:	SBH22	SBH24	SBH25
				Sampl	e Type:	WATER	WATER	WATER
			S	ample Su	b Type:	Ground Water	Ground Water	Ground Water
				Date Sa	ampled:	12-Feb-2024	12-Feb-2024	12-Feb-2024
Determinand	HWOL Code	Accred.	SOP	Units	LOD			
pH at 20C		U	1010		4.0	10.2	7.8	9.5
Electrical Conductivity at 25C		U	1020	µS/cm	1.0	850	360	820
Total Dissolved Solids		N	1020	mg/l	1.0	550	230	530
Colour		Ν	1050	Hazen unit	1.0	170	< 1.0	16
Odour		N	1070		N/A	None	None	None
Biochemical Oxygen Demand		N	1090	mg O2/I	4.0	[B] 19	[B] < 4.0	[B] 16
Chemical Oxygen Demand		U	1100	mg O2/I	10	200	< 10	150
Alkalinity (Total)		U	1220	mg/l	10	220	160	220
Chloride		U	1220	mg/l	1.0	30	25	30
Ammoniacal Nitrogen		U	1220	mg/l	0.050	0.86	0.49	0.86
Nitrite as NO2		U	1220	mg/l	0.020	0.26	0.060	0.85
Nitrate as NO3		U	1220	mg/l	0.50	< 0.50	< 0.50	3.0
Phosphate		U	1220	mg/l	0.200	0.26	< 0.20	< 0.20
Sulphate		U	1220	mg/l	1.0	240	16	230
Cyanide (Total)		U	1300	mg/l	0.050	< 0.050	< 0.050	< 0.050
Cyanide (Free)		U	1300	mg/l	0.050	< 0.050	< 0.050	< 0.050
Calcium (Dissolved)		U	1455	mg/l	2.00	36	59	29
Potassium (Dissolved)		U	1455	mg/l	0.50	14	1.9	13
Magnesium (Dissolved)		U	1455	mg/l	0.20	< 0.20	8.3	0.28
Sodium (Dissolved)		U	1455	mg/l	1.50	160	5.9	160
Total Hardness as CaCO3		U	1270	mg/l	15	91	180	73
Arsenic (Dissolved)		U	1455	µg/l	0.20	5.1	0.29	4.7
Boron (Dissolved)		U	1455	µg/l	10.0	13	< 10	16
Barium (Dissolved)		U	1455	µg/l	5.00	17	24	13
Beryllium (Dissolved)		U	1455	µg/l	1.00	< 1.0	< 1.0	< 1.0
Cadmium (Dissolved)		U	1455	µg/l	0.11	< 0.11	< 0.11	< 0.11
Chromium (Dissolved)		U	1455	µg/l	0.50	7.4	1.5	5.0
Copper (Dissolved)		U	1455	µg/l	0.50	74	2.2	54
Iron (Dissolved)		N	1455	µg/l	5.0	300	16	280
Manganese (Dissolved)		U	1455	µg/l	0.50	6.9	4.4	7.2
Nickel (Dissolved)		U	1455	µg/l	0.50	37	1.0	29
Lead (Dissolved)		U	1455	µg/l	0.50	0.61	< 0.50	0.69
Selenium (Dissolved)		U	1455	µg/l	0.50	3.5	< 0.50	3.0
Vanadium (Dissolved)	_	U	1455	µg/l	0.50	49	< 0.50	40
Zinc (Dissolved)	_	U	1455	µg/l	2.5	23	9.7	23
Mercury Low Level		U	1460	µg/l	0.010	0.025	< 0.010	0.042
Low-Level Chromium (Hexavalent)		U	1495	µg/l	0.10	< 0.10	0.68	< 0.10
Chromium (Trivalent) LL		N	1455	µg/l	1.00	7.4	< 1.0	5.0
Total Organic Carbon	1	U	1610	ma/l	2.0	92	4.0	85

Client: Northwest Geotech	west Geotech Chemtest Job No.:			24-04393	24-04393	24-04393		
Quotation No.:			Chem	test Sam	ple ID.:	1766363	1766364	1766365
			5	Sample L	ocation:	SBH22	SBH24	SBH25
				Sampl	е Туре:	WATER	WATER	WATER
			S	ample Su	b Type:	Ground Water	Ground Water	Ground Water
				Date Sa	ampled:	12-Feb-2024	12-Feb-2024	12-Feb-2024
Determinand	HWOL Code	Accred.	SOP	Units	LOD			
Aliphatic TPH >C5-C6	EH_2D_AL_#1	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C6-C8	EH_2D_AL_#1	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C8-C10	EH_2D_AL_#1	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C10-C12	EH_2D_AL_#1	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C12-C16	EH_2D_AL_#1	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C16-C21	EH_2D_AL_#1	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C21-C35	EH_2D_AL_#1	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C35-C44	EH_2D_AL_#1	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10
Total Aliphatic Hydrocarbons	EH_2D_AL_#1	N	1675	µg/l	5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	EH_2D_AR_#1	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C7-C8	EH_2D_AR_#1	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C8-C10	EH_2D_AR_#1	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C10-C12	EH_2D_AR_#1	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C12-C16	EH_2D_AR_#1	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C16-C21	EH_2D_AR_#1	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C21-C35	EH_2D_AR_#1	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C35-C44	EH_2D_AR_#1	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10
Total Aromatic Hydrocarbons	EH_2D_AR_#1	N	1675	µg/l	5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	EH_2D_Total_#1	N	1675	µg/l	10	< 10	< 10	< 10
Dichlorodifluoromethane		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0
Chloromethane		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride		N	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0
Bromomethane		U	1760	µg/l	5	< 5	< 5	< 5
Chloroethane		U	1760	µg/l	2.0	< 2.0	< 2.0	< 2.0
Trichlorofluoromethane		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene		0	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0
I rans 1,2-Dichloroethene		0	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane		0	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0
cis 1,2-Dichloroethene		0	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0
Bromochloromethane		0	1760	µg/I	5	< 5	< 5	< 5
		0	1760	µg/I	1.0	< 1.0	< 1.0	< 1.0
1,1,1-I richloroethane		0	1760	µg/I	1.0	< 1.0	< 1.0	< 1.0
l etrachloromethane		0	1760	µg/I	1.0	< 1.0	< 1.0	< 1.0
1,1-Dicnioropropene		0	1760	µg/I	1.0	< 1.0	< 1.0	< 1.0
Benzene		0	1760	µg/I	1.0	< 1.0	< 1.0	< 1.0
		U	1760	µg/I	2.0	< 2.0	< 2.0	< 2.0
		N	1760	µg/I	1.0	< 1.0	< 1.0	< 1.0
		U	1760	µg/i	1.0	< 1.0	< 1.0	< 1.0
			1760	µg/I	10	< 10	< 10	< 10
Diomodichioromethane		I U	1/60	U0/I	1 3	< 5	< 5	I < 5

Client: Northwest Geotech		Chemtest Job No.:			24-04393	24-04393	24-04393	
Quotation No.:			Chem	test Sam	ple ID.:	1766363	1766364	1766365
			Ś	Sample L	ocation:	SBH22	SBH24	SBH25
				Samp	le Type:	WATER	WATER	WATER
			S	ample Su	ıb Type:	Ground Water	Ground Water	Ground Water
				Date S	ampled:	12-Feb-2024	12-Feb-2024	12-Feb-2024
Determinand	HWOL Code	Accred.	SOP	Units	LOD			
cis-1,3-Dichloropropene		N	1760	µg/l	10	< 10	< 10	< 10
Toluene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0
Trans-1,3-Dichloropropene		N	1760	µg/l	10	< 10	< 10	< 10
1,1,2-Trichloroethane		U	1760	µg/l	10	< 10	< 10	< 10
Tetrachloroethene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane		U	1760	µg/l	2.0	< 2.0	< 2.0	< 2.0
Dibromochloromethane		U	1760	µg/l	10	< 10	< 10	< 10
1,2-Dibromoethane		U	1760	µg/l	5	< 5	< 5	< 5
Chlorobenzene		N	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane		U	1760	µg/l	2.0	< 2.0	< 2.0	< 2.0
Ethylbenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0
o-Xylene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0
Styrene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0
Tribromomethane		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0
Bromobenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichloropropane		N	1760	µg/l	50	< 50	< 50	< 50
N-Propylbenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0
2-Chlorotoluene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0
4-Chlorotoluene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0
Tert-Butylbenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0
Sec-Butylbenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene		N	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0
4-Isopropyltoluene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0
N-Butylbenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-Chloropropane		U	1760	µg/l	50	< 50	< 50	< 50
1,2,4-Trichlorobenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene		U	1760	µg/l	2.0	< 2.0	< 2.0	< 2.0
Methyl Tert-Butyl Ether		N	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0
Surfactants as MBAS		N	1770	mg/l	0.020	0.13	0.028	< 0.020
Naphthalene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10
Acenaphthene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10
Fluorene		U	1800	ua/	0.10	< 0.10	< 0.10	< 0.10

Client: Northwest Geotech			Ch	emtest J	ob No.:	24-04393	24-04393	24-04393
Quotation No.:			Chem	test Sam	ple ID.:	1766363	1766364	1766365
			9	Sample L	ocation:	SBH22	SBH24	SBH25
				Sampl	e Type:	WATER	WATER	WATER
			S	ample Su	b Type:	Ground Water	Ground Water	Ground Water
				Date Sa	ampled:	12-Feb-2024	12-Feb-2024	12-Feb-2024
Determinand	HWOL Code	Accred.	Accred. SOP Units LOD					
Phenanthrene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10
Anthracene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10
Fluoranthene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10
Pyrene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10
Chrysene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's		U	U 1800 µg/l 2.0		< 2.0	< 2.0	< 2.0	
Total Phenols		U	1920	mg/l	0.030	< 0.030	< 0.030	< 0.030

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1766356			SBH2	12-Feb-2024	В	Coloured Winchester 1000ml
1766356			SBH2	12-Feb-2024	В	EPA Vial 40ml
1766356			SBH2	12-Feb-2024	В	Plastic Bottle 1000ml
1766357			SBH7	12-Feb-2024	В	Coloured Winchester 1000ml
1766357			SBH7	12-Feb-2024	В	EPA Vial 40ml
1766357			SBH7	12-Feb-2024	В	Plastic Bottle 1000ml
1766358			SBH9	12-Feb-2024	В	Coloured Winchester 1000ml
1766358			SBH9	12-Feb-2024	В	EPA Vial 40ml
1766358			SBH9	12-Feb-2024	В	Plastic Bottle 1000ml
1766359			SBH12	12-Feb-2024	В	Coloured Winchester 1000ml
1766359			SBH12	12-Feb-2024	В	EPA Vial 40ml
1766359			SBH12	12-Feb-2024	В	Plastic Bottle 1000ml
1766360			SBH16	12-Feb-2024	В	Coloured Winchester 1000ml
1766360			SBH16	12-Feb-2024	В	EPA Vial 40ml
1766360			SBH16	12-Feb-2024	В	Plastic Bottle 1000ml
1766361			SBH19	12-Feb-2024	В	Coloured Winchester 1000ml
1766361			SBH19	12-Feb-2024	В	EPA Vial 40ml
1766361			SBH19	12-Feb-2024	В	Plastic Bottle 1000ml
1766362			SBH20	12-Feb-2024	В	Coloured Winchester 1000ml
1766362			SBH20	12-Feb-2024	В	EPA Vial 40ml
1766362			SBH20	12-Feb-2024	В	Plastic Bottle 1000ml

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1766363			SBH22	12-Feb-2024	В	Coloured Winchester 1000ml
1766363			SBH22	12-Feb-2024	В	EPA Vial 40ml
1766363			SBH22	12-Feb-2024	В	Plastic Bottle 1000ml
1766364			SBH24	12-Feb-2024	В	Coloured Winchester 1000ml
1766364			SBH24	12-Feb-2024	В	EPA Vial 40ml
1766364			SBH24	12-Feb-2024	В	Plastic Bottle 1000ml
1766365			SBH25	12-Feb-2024	В	Coloured Winchester 1000ml
1766365			SBH25	12-Feb-2024	В	EPA Vial 40ml
1766365			SBH25	12-Feb-2024	В	Plastic Bottle 1000ml

Test Methods

SOP	Title	Parameters included	Method summary	Water Accred.
1010	pH Value of Waters	pH at 20°C	pH Meter	RE PW TE TS PL DW GW
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity at 25°C and Total Dissolved Solids (TDS) in Waters	Conductivity Meter	TE TS PL LE SW GW
1050	Colour	Colour	Spetctrophotometry	
1070	Odour	Odour	Olfactory examination	
1090	Biochemical Oxygen Demand	Biochemical Oxygen demand (BOD)	Colorimetric determination of dissolved oxygen in seeded sample after 5 days incubation at 20°C.	
1100	Chemical Oxygen Demand	Chemical Oxygen demand (COD)	Dichromate oxidation of organic matter in sample followed by colorimetric determination of residual Cr[VI].	TE TS PL LE GW
1140	Calorific Value	Calorific Value	Bomb Calorimeter	
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.	RE PW PL LE DW GW
1270	Total Hardness of Waters	Total hardness	Calculation applied to calcium and magnesium results, expressed as mg I-1 CaCO3 equivalent.	RE PW PL SW DW GW
1300	Cyanides & Thiocyanate in Waters	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Continuous Flow Analysis.	GW
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).	RE PW PL SW DW GW
1460	Mercury low-level in Waters by AFS	Mercury	Atomic Fluorescence Spectrometry, with collimated UV source, wavelength 253.7 nm.	PL GW
1495	Low Level Hexavalent Chromium in Waters	Chromium [VI]	Colorimetric determination of hexavalent chromium expressed as Cr (VI) μ g/l in water, using Ion Chromatography and UV-visible spectrophotometry.	GW
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation	PL SW GW
1675	TPH Aliphatic/Aromatic split in Waters by GC-FID(cf. Texas Method 1006 / TPH CWG)	Aliphatics: >C5–C6, >C6–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Pentane extraction / GCxGC FID detection	
1760	Volatile Organic Compounds (VOCs) in Waters by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics. (cf. USEPA Method 8260)	Automated headspace gas chromatographic (GC) analysis of water samples with mass spectrometric (MS) detection of volatile organic compounds.	PL GW
1770	MBAS	MBAS	Spectrophotometry	
1800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-MS	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Pentane extraction / GCMS detection	PL GW
1900	Phenols in Waters by GC-MS	Approximately 24 substituted Phenols, including Chlorophenols	Solvent extraction / GCMS detection	
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.	

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"
- SOP Standard operating procedure
- LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

Water Sample Category Key for Accreditation

DW - Drinking Water GW - Ground Water LE - Land Leachate NA - Not Applicable PL - Prepared Leachate PW - Processed Water

Report Information

RE - Recreational Water SA - Saline Water SW - Surface Water TE - Treated Effluent TS - Treated Sewage UL - Unspecified Liquid

Clean Up Codes

NC - No Clean Up MC - Mathematical Clean Up FC - Florisil Clean Up

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u> **APPENDIX G: Surface Water Laboratory Results**

🔅 eurofins

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Final Report			Email: info@chemtes	st.cor
Report No.:	24-02930-1			
Initial Date of Issue:	15-Feb-2024			
Re-Issue Details:				
Client	Northwest Geotech			
Client Address:	Unit 9 Northwest Business Complex Skeoge Industrial Estate Derry IRELAND			
Contact(s):	Paul McNamara			
Project	23-0092 Cavan RS			
Quotation No.:		Date Received:	31-Jan-202	24
Order No.:		Date Instructed	l: 31-Jan-202	24
No. of Samples:	6			
Turnaround (Wkdays):	5	Results Due:	06-Feb-20	24
Date Approved:	07-Feb-2024			
Approved By:				
and				

Details:

201

2183

Stuart Henderson, Technical Manager

For details about application of accreditation to specific matrix types, please refer to the Table at the back of this report

Client: Northwest Geotech			Ch	emtest J	ob No.:	24-02930	24-02930	24-02930	24-02930	24-02930	24-02930
Quotation No.:			Chem	itest Sam	ple ID.:	1760536	1760537	1760538	1760539	1760540	1760541
				Sample Lo	ocation:	SW1	SW2	SW3	SW4	SW5	SW6
				Sampl	е Туре:	WATER	WATER	WATER	WATER	WATER	WATER
			S	ample Su	b Type:	Surface Water					
				Date Sa	ampled:	25-Jan-2024	25-Jan-2024	25-Jan-2024	25-Jan-2024	25-Jan-2024	25-Jan-2024
Determinand	HWOL Code	Accred.	SOP	Units	LOD						
pH at 20C		U	1010		4.0	7.8	7.7	7.7	7.8	8.1	8.0
Electrical Conductivity at 25C		U	1020	µS/cm	1.0	260	260	260	260	1100	550
Total Dissolved Solids		Ν	1020	mg/l	1.0	170	170	170	170	740	360
Colour		Ν	1050	Hazen unit	1.0	60	65	45	< 1.0	< 1.0	< 1.0
Odour		Ν	1070		N/A	Odourless	Odourless	Odourless	Odourless	Odourless	Odourless
Biochemical Oxygen Demand		N	1090	mg O2/I	4.0	[B] < 4.0	[B] < 4.0	[B] < 4.0	[B] < 4.0	[B] < 4.0	[B] < 4.0
Chemical Oxygen Demand		U	1100	mg O2/l	10	[B] 23	[B] 22	[B] 21	[B] 21	[B] < 10	[B] 11
Alkalinity (Total)		U	1220	mg/l	10	77	67	77	69	220	240
Chloride		U	1220	mg/l	1.0	19	22	22	22	220	34
Ammoniacal Nitrogen		U	1220	mg/l	0.050	0.23	0.22	0.093	0.078	0.10	0.14
Nitrite as NO2		U	1220	mg/l	0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Nitrate as NO3		U	1220	mg/l	0.50	3.1	3.9	3.7	3.8	14	2.6
Phosphate		U	1220	mg/l	0.200	0.34	0.59	0.31	0.33	0.22	0.38
Sulphate		U	1220	mg/l	1.0	9.6	11	11	11	30	15
Cyanide (Total)		U	1300	mg/l	0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Cyanide (Free)		U	1300	mg/l	0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Calcium (Dissolved)		U	1455	mg/l	2.00	38	32	31	32	130	94
Potassium (Dissolved)		U	1455	mg/l	0.50	4.5	3.9	3.8	3.8	2.2	2.6
Magnesium (Dissolved)		U	1455	mg/l	0.20	4.7	4.6	4.3	4.4	7.1	5.0
Sodium (Dissolved)		U	1455	mg/l	1.50	13	14	13	13	120	19
Total Hardness as CaCO3		U	1270	mg/l	15	110	100	94	99	350	260
Arsenic (Dissolved)		U	1455	µg/l	0.20	0.74	0.86	0.56	0.58	0.48	0.69
Boron (Dissolved)		U	1455	µg/l	10.0	26	17	13	12	22	15
Barium (Dissolved)		U	1455	µg/l	5.00	36	47	34	34	53	50
Beryllium (Dissolved)		U	1455	µg/l	1.00	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cadmium (Dissolved)		U	1455	µg/l	0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11
Chromium (Dissolved)		U	1455	µg/l	0.50	0.78	1.2	0.62	0.84	5.9	< 0.50
Copper (Dissolved)		U	1455	µg/l	0.50	4.3	5.3	3.7	4.9	1.8	3.2
Iron (Dissolved)		N	1455	µg/l	5.0	360	1500	300	390	190	1500
Manganese (Dissolved)		U	1455	µg/l	0.50	53	360	36	45	140	250
Nickel (Dissolved)		U	1455	µg/l	0.50	3.2	3.4	2.5	2.6	1.2	2.7
Lead (Dissolved)		U	1455	µg/l	0.50	0.58	1.5	< 0.50	1.6	< 0.50	1.9
Selenium (Dissolved)		U	1455	µg/l	0.50	0.76	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Vanadium (Dissolved)		U	1455	µg/l	0.50	0.79	1.6	0.65	0.88	< 0.50	0.65
Zinc (Dissolved)		U	1455	µg/l	2.5	30	41	30	32	28	34
Mercury Low Level		U	1460	µg/l	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Low-Level Chromium (Hexavalent)		U	1495	µg/l	0.10	[B] < 0.10	[B] < 0.10	[B] < 0.10	[B] < 0.10	[B] < 0.10	[B] < 0.10
Chromium (Trivalent) LL		N	1455	µg/l	1.00	[B] < 1.0	[B] 1.2	[B] < 1.0	[B] < 1.0	[B] 5.9	[B] < 1.0

Client: Northwest Geotech			Ch	emtest J	ob No.:	24-02930	24-02930	24-02930	24-02930	24-02930	24-02930
Quotation No.:			Chem	test Sam	ple ID.:	1760536	1760537	1760538	1760539	1760540	1760541
			S	Sample Lo	ocation:	SW1	SW2	SW3	SW4	SW5	SW6
				Sampl	e Type:	WATER	WATER	WATER	WATER	WATER	WATER
			Sa	ample Su	b Type:	Surface Water					
				Date Sa	ampled:	25-Jan-2024	25-Jan-2024	25-Jan-2024	25-Jan-2024	25-Jan-2024	25-Jan-2024
Determinand	HWOL Code	Accred.	SOP	Units	LOD						
Total Organic Carbon		U	1610	mg/l	2.0	8.3	8.3	8.9	8.2	3.5	5.3
Aliphatic TPH >C5-C6	EH_AL_2D_#1	Ν	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C6-C8	EH_AL_2D_#1	Ν	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C8-C10	EH_AL_2D_#1	Ν	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C10-C12	EH_AL_2D_#1	Ν	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C12-C16	EH_AL_2D_#1	Ν	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C16-C21	EH_AL_2D_#1	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C21-C35	EH_AL_2D_#1	Ν	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C35-C44	EH_AL_2D_#1	Ν	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Aliphatic Hydrocarbons	EH_AL_2D_#1	Ν	1675	µg/l	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	EH_AR_2D_#1	Ν	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C7-C8	EH_AR_2D_#1	Ν	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C8-C10	EH_AR_2D_#1	Ν	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C10-C12	EH_AR_2D_#1	Ν	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C12-C16	EH_AR_2D_#1	Ν	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C16-C21	EH_AR_2D_#1	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C21-C35	EH_AR_2D_#1	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C35-C44	EH_AR_2D_#1	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Aromatic Hydrocarbons	EH_AR_2D_#1	N	1675	µg/l	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	EH_Total_2D_#1	N	1675	µg/l	10	< 10	< 10	< 10	< 10	< 10	< 10
Dichlorodifluoromethane		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloromethane		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride		N	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane		U	1760	µg/l	5	< 5	< 5	< 5	< 5	< 5	< 5
Chloroethane		U	1760	µg/l	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Trichlorofluoromethane		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans 1,2-Dichloroethene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
cis 1,2-Dichloroethene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromochloromethane		U	1760	µg/l	5	< 5	< 5	< 5	< 5	< 5	< 5
Trichloromethane		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloromethane		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Benzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane		U	1760	µg/l	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Irichloroethene		N	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1.2-Dichloropropane	1	I U	1760	ua/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Client: Northwest Geotech			Ch	emtest J	ob No.:	24-02930	24-02930	24-02930	24-02930	24-02930	24-02930
Quotation No.:			Chem	test Sam	ple ID.:	1760536	1760537	1760538	1760539	1760540	1760541
			5	Sample L	ocation:	SW1	SW2	SW3	SW4	SW5	SW6
				Sampl	e Type:	WATER	WATER	WATER	WATER	WATER	WATER
			S	ample Su	b Type:	Surface Water					
				Date Sa	ampled:	25-Jan-2024	25-Jan-2024	25-Jan-2024	25-Jan-2024	25-Jan-2024	25-Jan-2024
Determinand	HWOL Code	Accred.	SOP	Units	LOD						
Dibromomethane		U	1760	µg/l	10	< 10	< 10	< 10	< 10	< 10	< 10
Bromodichloromethane		U	1760	µg/l	5	< 5	< 5	< 5	< 5	< 5	< 5
cis-1,3-Dichloropropene		N	1760	µg/l	10	< 10	< 10	< 10	< 10	< 10	< 10
Toluene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,3-Dichloropropene		N	1760	µg/l	10	< 10	< 10	< 10	< 10	< 10	< 10
1,1,2-Trichloroethane		U	1760	µg/l	10	< 10	< 10	< 10	< 10	< 10	< 10
Tetrachloroethene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane		U	1760	µg/l	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Dibromochloromethane		U	1760	µg/l	10	< 10	< 10	< 10	< 10	< 10	< 10
1,2-Dibromoethane		U	1760	µg/l	5	< 5	< 5	< 5	< 5	< 5	< 5
Chlorobenzene		N	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane		U	1760	µg/l	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Ethylbenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Styrene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tribromomethane		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromobenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichloropropane		N	1760	µg/l	50	< 50	< 50	< 50	< 50	< 50	< 50
N-Propylbenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Chlorotoluene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Chlorotoluene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tert-Butylbenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Sec-Butylbenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene		N	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Isopropyltoluene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
N-Butylbenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-Chloropropane		U	1760	µg/l	50	< 50	< 50	< 50	< 50	< 50	< 50
1,2,4-Trichlorobenzene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene		U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene		U	1760	µg/l	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Methyl Tert-Butyl Ether		N	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Surfactants as MBAS		N	1770	mg/l	0.020	0.13	0.099	0.39	0.13	0.27	0.27
Naphthalene		U	1800	ua/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

Client: Northwest Geotech			Che	emtest J	ob No.:	24-02930	24-02930	24-02930	24-02930	24-02930	24-02930
Quotation No.:		Chemtest Sample ID.:			1760536	1760537	1760538	1760539	1760540	1760541	
		Sample Location:				SW1	SW2	SW3	SW4	SW5	SW6
				Sampl	e Type:	WATER	WATER	WATER	WATER	WATER	WATER
		Sample Sub Type:		Surface Water							
			Date Sampled:		25-Jan-2024	25-Jan-2024	25-Jan-2024	25-Jan-2024	25-Jan-2024	25-Jan-2024	
Determinand	HWOL Code	Accred.	SOP	Units	LOD						
Acenaphthylene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene		U	1800	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's		U	1800	μg/l	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Total Phenols		U	1920	mg/l	0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1760536			SW1	25-Jan-2024	В	Coloured Winchester 500ml
1760536			SW1	25-Jan-2024	В	EPA Vial 40ml
1760536			SW1	25-Jan-2024	В	Miscellaneou s
1760537			SW2	25-Jan-2024	В	Coloured Winchester 500ml
1760537			SW2	25-Jan-2024	В	EPA Vial 40ml
1760537			SW2	25-Jan-2024	В	Miscellaneou s
1760538			SW3	25-Jan-2024	В	Coloured Winchester 500ml
1760538			SW3	25-Jan-2024	В	EPA Vial 40ml
1760538			SW3	25-Jan-2024	В	Miscellaneou s
1760539			SW4	25-Jan-2024	В	Coloured Winchester 500ml
1760539			SW4	25-Jan-2024	В	EPA Vial 40ml
1760539			SW4	25-Jan-2024	В	Miscellaneou s
1760540			SW5	25-Jan-2024	В	Coloured Winchester 500ml
1760540			SW5	25-Jan-2024	В	EPA Vial 40ml
1760540			SW5	25-Jan-2024	В	Miscellaneou s
1760541			SW6	25-Jan-2024	В	Coloured Winchester 500ml
1760541			SW6	25-Jan-2024	В	EPA Vial 40ml
1760541			SW6	25-Jan-2024	В	Miscellaneou s

Test Methods

SOP	Title	Parameters included	Method summary	Water Accred.	
1010	pH Value of Waters	pH at 20°C	pH Meter	RE PW TE TS PL DW GW	
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity at 25°C and Total Dissolved Solids (TDS) in Waters	Conductivity Meter	TE TS PL LE SW GW	
1050	Colour	Colour	Spetctrophotometry		
1070	Odour	Odour	Olfactory examination		
1090	Biochemical Oxygen Demand	Biochemical Oxygen demand (BOD)	Colorimetric determination of dissolved oxygen in seeded sample after 5 days incubation at 20°C.		
1100	Chemical Oxygen Demand	Chemical Oxygen demand (COD)	Dichromate oxidation of organic matter in sample followed by colorimetric determination of residual Cr[VI].	TE TS PL LE GW	
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.	RE PW PL LE DW GW	
1270	Total Hardness of Waters	Total hardness	Calculation applied to calcium and magnesium results, expressed as mg I-1 CaCO3 equivalent.	RE PW PL SW DW GW	
1300	Cyanides & Thiocyanate in Waters	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Continuous Flow Analysis.	GW	
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).	RE PW PL SW DW GW	
1460	Mercury low-level in Waters by AFS	Mercury	Atomic Fluorescence Spectrometry, with collimated UV source, wavelength 253.7 nm.	PL GW	
1490	Hexavalent Chromium in Waters	Chromium [VI]	Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using 1,5- diphenylcarbazide.		
1495	Low Level Hexavalent Chromium in Waters	Chromium [VI]	Colorimetric determination of hexavalent chromium expressed as Cr (VI) μ g/l in water, using Ion Chromatography and UV-visible spectrophotometry.	GW	
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation	PL SW GW	
1675	TPH Aliphatic/Aromatic split in Waters by GC-FID(cf. Texas Method 1006 / TPH CWG)	Aliphatics: >C5–C6, >C6–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Pentane extraction / GCxGC FID detection		
1760	Volatile Organic Compounds (VOCs) in Waters by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics. (cf. USEPA Method 8260)	Automated headspace gas chromatographic (GC) analysis of water samples with mass spectrometric (MS) detection of volatile organic compounds.	PL GW	
1770	MBAS	MBAS	Spectrophotometry		
1800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-MS	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Pentane extraction / GCMS detection	PL GW	
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.		

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"
- SOP Standard operating procedure
- LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

Water Sample Category Key for Accreditation

DW - Drinking Water GW - Ground Water LE - Land Leachate NA - Not Applicable PL - Prepared Leachate PW - Processed Water

Report Information

RE - Recreational Water SA - Saline Water SW - Surface Water TE - Treated Effluent TS - Treated Sewage UL - Unspecified Liquid

Clean Up Codes

NC - No Clean Up MC - Mathematical Clean Up FC - Florisil Clean Up

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Appendix H: Ground Gas Summary

16/02/2024	INITIAL FLOW	STEADY FLOW	CH₄	CO ₂ Initial	CO ₂ steady	02	% LEL	ATM PRESSURE	BOREHOLE PRESSURE	DEPTH TO WATER
	l/h	l/h	%vol	%vol	%vol	%	%	mb	mb	m
SBH01	0	0.3	0.1	0	0	21.1	0.1	1012	1008	0
SBH02	0	0.3	0.1	0	0	21.2	0.1	1012	1008	0
SBH03	0	0.3	0.1	0	0	21	0.1	1012	1008	0.2
SBH04	0	0.3	0.1	0	0	21.1	0.1	1012	1008	0.7
SBH05	0	0.3	0.1	0	0	21.1	0.1	1012	1009	0.41
SBH06	0	0.3	0.1	0	0	21	0.1	1012	1008	0
SBH07	0	0.3	0.1	0	0	21.1	0.1	1012	1008	0.3
SBH08	0	0.3	0.1	0	0	21	0.1	1012	1008	0.33
SBH09	0	0.3	0.1	0	0	21.3	0.1	1012	1008	0.53
SBH10	0	0.2	0.1	0	0	21.3	0.1	1012	1008	0.72
SBH11	0	0.2	0.1	0	0	21.2	0.1	1012	1008	dry
SBH12	0	0.2	0.1	0	0	21.3	0.1	1012	1008	0.6
SBH13	0	0.2	0.1	0	0	21.2	0.1	1012	1008	0.9
SBH14	0	0.2	0.1	0	0	21.3	0.1	1012	1008	0
SBH15	0	0.2	0.1	0	0	21.3	0.1	1012	1008	0.81
SBH16	0	0.2	0.1	0	0	21.3	0.1	1012	1008	0.4
SBH17	0	0.2	0.1	0	0	21.3	0.1	1012	1008	0.75
SBH18	0	0.2	0.1	0	0	21.3	0.1	1012	1008	dry
SBH19	0	0.3	0.1	0	0	21.1	0.1	1012	1008	0.35
SBH20	0	0.2	0.1	0	0	21.3	0.1	1012	1008	0.93
SBH21	0	0.3	0.1	0	0	21	0.1	1012	1009	1.2
SBH22	0	0.3	0.1	0	0	21	0.1	1012	1008	1.55
SBH23	0	0.3	0.1	0	0	21	0.1	1012	1008	0.2
SBH24	0	0.3	0.1	0	0	21.1	0.1	1012	1008	0.2
SBH25	0	0.3	0.1	0	0	21	0.1	1012	1008	0.2

Weather: Overcast with light wind Atmospheric Trend: 1012mb and Rising
20.02.2024	INITIAL FLOW	STEADY FLOW	CH4	CO ₂ Initial	CO ₂ steady	02	% LEL	ATM PRESSURE	BOREHOLE PRESSURE	DEPTH TO WATER
	l/h	l/h	%vol	%vol	%vol	%	%	mb	mb	m
SBH01	0	0.2	0.1	0	0	21.2	0.1	1016	1012	0
SBH02	0	0.3	0.1	0	0	21.3	0.1	1016	1012	0
SBH03	0	0.3	0.1	0	0	21	0.1	1016	1012	0.28
SBH04	0	0.3	0.1	0	0	21.2	0.1	1016	1012	0.81
SBH05	0	0.2	0.1	0	0	21.2	0.1	1016	1012	0.35
SBH06	0	0.3	0.1	0	0	21.1	0.1	1016	1012	0
SBH07	0	0.4	0.1	0	0	21.1	0.1	1016	1012	0.34
SBH08	0	0.3	0.1	0	0	21.2	0.1	1016	1012	0.28
SBH09	0	0.2	0.1	0	0	21.3	0.1	1016	1012	0.61
SBH10	0	0.2	0.1	0	0	21.3	0.1	1016	1012	0.7
SBH11	0	0.3	0.1	0	0	21.2	0.1	1016	1012	DRY
SBH12	0	0.3	0.1	0	0	21.2	0.1	1016	1012	0.63
SBH13	0	0.3	0.1	0	0	21.2	0.1	1016	1012	0.82
SBH14	0	0.3	0.1	0	0	21.3	0.1	1016	1012	0
SBH15	0	0.3	0.1	0	0	21.2	0.1	1016	1012	0.74
SBH16	0	0.3	0.1	0	0	21.1	0.1	1016	1012	0.38
SBH17	0	0.2	0.1	0	0	21.1	0.1	1016	1012	0.7
SBH18	0	0.2	0.1	0	0	21.3	0.1	1016	1012	DRY
SBH19	0	0.2	0.1	0	0	21.2	0.1	1016	1012	0.38
SBH20	0	0.2	0.1	0	0	21.2	0.1	1016	1012	1.01
SBH21	0	0.2	0.1	0	0	21.2	0.1	1016	1012	1.13
SBH22	0	0.3	0.1	0	0	21.2	0.1	1016	1012	1.45
SBH23	0	0.3	0.1	0	0	21.2	0.1	1016	1012	0.23
SBH24	0	0.2	0.1	0	0	21	0.1	1016	1012	0.18
SBH25	0	0.3	0.1	0	0	21.3	0.1	1016	1012	0.24

Weather: Overcast with light rain Atmospheric Trend: 1016mb and falling

26.02.2024	INITIAL FLOW	STEADY FLOW	CH4	CO ₂ Initial	CO ₂ steady	02	% LEL	ATM PRESSURE	BOREHOLE PRESSURE	DEPTH TO WATER
	l/h	l/h	%vol	%vol	%vol	%	%	mb	mb	m
SBH01	0	0.2	0.1	0	0	21.2	0.1	1021	1017	0
SBH02	0	0.3	0.1	0	0	21.2	0.1	1021	1017	0
SBH03	0	0.3	0.1	0	0	21.3	0.1	1021	1017	0.32
SBH04	0	0.3	0.1	0	0	21.3	0.1	1021	1017	0.78
SBH05	0	0.3	0.1	0	0	21.1	0.1	1021	1017	0.33
SBH06	0	0.2	0.1	0	0	21.2	0.1	1021	1017	0
SBH07	0	0.3	0.1	0	0	21.2	0.1	1021	1017	0.32
SBH08	0	0.3	0.1	0	0	21.2	0.1	1021	1017	0.25
SBH09	0	0.2	0.1	0	0	21.3	0.1	1021	1017	0.6
SBH10	0	0.2	0.1	0	0	21.2	0.1	1021	1017	0.71
SBH11	0	0.3	0.1	0	0	21.2	0.1	1021	1017	DRY
SBH12	0	0.3	0.1	0	0	21.3	0.1	1021	1017	0.68
SBH13	0	0.3	0.1	0	0	21.2	0.1	1021	1017	0.74
SBH14	0	0.2	0.1	0	0	21.3	0.1	1021	1017	0
SBH15	0	0.3	0.1	0	0	21.2	0.1	1021	1017	0.71
SBH16	0	0.3	0.1	0	0	21.1	0.1	1021	1017	0.42
SBH17	0	0.3	0.1	0	0	21.1	0.1	1021	1017	0.64
SBH18	0	0.3	0.1	0	0	21.2	0.1	1021	1017	DRY
SBH19	0	0.3	0.1	0	0	21.1	0.1	1021	1017	0.34
SBH20	0	0.2	0.1	0	0	21.1	0.1	1021	1017	1.09
SBH21	0	0.2	0.1	0	0	21	0.1	1021	1017	1.17
SBH22	0	0.3	0.1	0	0	21	0.1	1021	1017	1.42
SBH23	0	0.3	0.1	0	0	21.2	0.1	1021	1017	0.21
SBH24	0	0.3	0.1	0	0	21.1	0.1	1021	1017	0.23
SBH25	0	0.3	0.1	0	0	21.3	0.1	1021	1017	0.21

Weather: Overcast Atmospheric Trend: 1021mb and rising

01.03.2024	INITIAL FLOW	STEADY FLOW	CH₄	CO ₂ Initial	CO₂ steady	02	% LEL	ATM PRESSURE	BOREHOLE PRESSURE	DEPTH TO WATER
	l/h	l/h	%vol	%vol	%vol	%	%	mb	mb	m
SBH01	0	0.2	0.1	0	0	21	0.1	988	990	0
SBH02	0	0.3	0.1	0	0	21.1	0.1	988	990	0
SBH03	0	0.2	0.1	0	0	21	0.1	988	990	0.22
SBH04	0	0.3	0.1	0	0	21	0.1	988	990	0.75
SBH05	0	0.2	0.1	0	0	21.1	0.1	988	990	0.43
SBH06	0	0.2	0.1	0	0	21.1	0.1	988	990	0
SBH07	0	0.3	0.1	0	0	21.1	0.1	988	990	0.28
SBH08	0	0.3	0.1	0	0	21	0.1	988	990	0.31
SBH09	0	0.2	0.1	0	0	21	0.1	988	991	0.49
SBH10	0	0.2	0.1	0	0	21.1	0.1	988	990	0.75
SBH11	0	0.3	0.1	0	0	21.1	0.1	988	991	Dry
SBH12	0	0.2	0.1	0	0	21	0.1	988	990	0.61
SBH13	0	0.2	0.1	0	0	21.1	0.1	988	990	1
SBH14	0	0.3	0.1	0	0	21.1	0.1	988	991	0
SBH15	0	0.3	0.1	0	0	21.1	0.1	988	990	0.76
SBH16	0	0.2	0.1	0	0	21.1	0.1	988	992	0.34
SBH17	0	0.2	0.1	0	0	21	0.1	988	990	0.68
SBH18	0	0.3	0.1	0	0	21.1	0.1	988	992	Dry
SBH19	0	0.3	0.1	0	0	21	0.1	988	991	0.31
SBH20	0	0.2	0.1	0	0	21.1	0.1	988	990	0.9
SBH21	0	0.2	0.1	0	0	21.1	0.1	988	990	1.21
SBH22	0	0.2	0.1	0	0	21.2	0.1	988	990	1.46
SBH23	0	0.3	0.1	0	0	21.3	0.1	988	990	0.27
SBH24	0	0.3	0.1	0	0	21	0.1	988	991	0.31
SBH25	0	0.2	0.1	0	0	21.1	0.1	988	992	0.24

Weather: Overcast Atmospheric Trend: 988mb and rising **APPENDIX I: Geological Cross Sections**

Notes:

Vertical Exaggeration = 5

Land Raise

Land Cut

Groundwater Level - 01/03/24

----- Approximate head of rock

McAdam Design

Cavan Regional Sports Campus

Geological Cross Sections

Scale 1:1250@A1

Drawing No. P000-AA-00

Date 05/03/24

Unit 5, Forty Eight North, Duncrue Street, Belfast BT3 9BJ Tel: 028 9074 7766